This is an outdated version published on 2023-08-05. Read the most recent version.

Soluciones tecnológicas para el desarrollo de la agricultura de precisión a través de imágenes multiespectrales.

Authors

Oscar Eduardo Gualdrón Guerrero
Universidad de Pamplona
https://orcid.org/0000-0002-7854-6842
Diego Alfonso Peláez Carrillo
Universidad de Pamplona
https://orcid.org/0000-0003-4909-7299
Alfonso Eugenio Capacho Mogollón
Universidad de Pamplona
https://orcid.org/0000-0002-0044-5566

Keywords:

Soluciones, Tecnológicas, Desarrollo, Agricultura, Precisión, Imágenes, Multiespectrales

Synopsis

En este libro los autores pretenden transmitir la información necesaria y los resultados de investigaciones que demuestren que, por medio de la implementación de las imágenes multiespectrales como herramienta de adquisición remota de información para el monitoreo de cultivos, se puede identificar de antemano las características del terreno en cuanto a la calidad y cantidad de la vegetación presente, además, de la identificación de problemas en las áreas que son materia de estudio.

Se busca destacar la integración del sistema en UAV, lo que permite, entre otras ventajas, una movilización rápida y eficiente por grandes extensiones de tierra a cualquier altura, complementando las actividades productivas de los cultivadores en el desarrollo de métodos de inspección no destructiva que permite suministrar información real y precisa de los cultivos de diferentes modelos agroecológicos.

Downloads

Download data is not yet available.

References

Akatsu, T., Takiguchi, Y., Shinoda, Y., Wakai, F., & Muto, H. (2022). Optical transmittance and electrical conductivity of silica glass with biserial and hierarchical network structures made of carbon nanofi-bers. Ceramics International, 48(24), 36515–36520. https://doi.org/10.1016/J.CERAMINT.2022.08.211

Alabi, T. R., Abebe, A. T., Chigeza, G., & Fowobaje, K. R. (2022). Estimation of soybean grain yield from multispectral high-resolution UAV data with machine learning models in West Africa. Remote Sensing Applications: Society and Environment, 27, 100782. https://doi.org/10.1016/J.RSASE.2022.100782

Almeida, P. A. D., & Gregorio-Hetem, J. (2022). Aspectos do Sol observados em diferentes faixas espectrais. Revista Brasileira de Ensino de Física, 44, e202100405. https://doi.org/10.1590/1806-9126-rbef-2021-0405

Alvarenga, C. B., Mundim, G. S. M., Santos, E. A., Gallis, R. B. A., Zampiroli, R., Rinaldi, P. C. N., & Prado, J. R. (2023). Normalized difference vegetation index for desiccation evaluation with glyphosate 2,4-D in magnetized spray solution. Brazilian Journal of Biology, 83, e246579. https://doi.org/10.1590/1519-6984.246579

Atia, A., Bouabdallah, S., Ghernaout, B., Teggar, M., & Benchatti, T. (2023). Investigation of various absorber surface shapes for performance improvement of solar chimney power plant. Applied Thermal Engineering, 235, 121395. https://doi.org/10.1016/J.APPLTHERMALENG.2023.121395

Bastiaanssen, W. G. M., Molden, D. J., & Makin, I. W. (2000). Remote sensing for irrigated agriculture: examples from research and posible applications. Agricultural Water Manage research and possible applications. Agricultural Water Management, 46(2), 137–155. https://doi.org/https://doi.org/10.1016/S0378-3774(00)00080-9

Bendig, J., Malenovský, Z., Gautam, D., & Lucieer, A. (2020). Solar-In-duced Chlorophyll Fluorescence Measured From an Unmanned Aircraft System: Sensor Etaloning and Platform Motion Correction. IEEE Transactions on Geoscience and Remote Sensing, 58(5), 3437–3444. https://doi.org/10.1109/TGRS.2019.2956194

Bonnaire Rivera, L., Montoya Bonilla, B., & Obando-Vidal, F. (2021). Procesamiento de imágenes multiespectrales captadas con drones para evaluar el índice de vegetación de diferencia normalizada en plantaciones de café variedad Castillo. Ciencia & Tecnología Agropecuaria, 22(1). https://doi.org/10.21930/rcta.vol22_num1_art:1578

Bourgeon, M.-A., Paoli, J.-N., Jones, G., Villette, S., & Gée, C. (2016). Field radiometric calibration of a multispectral on-the-go sensor dedicated to the characterization of vineyard foliage. Computers and Electronics in Agriculture, 123, 184–194. https://doi.org/https://doi.org/10.1016/j.compag.2016.02.019

Bouvet, M. (2014). Radiometric comparison of multispectral imagers over a pseudo-invariant calibration site using a reference radiometric model. Remote Sensing of Environment, 140, 141–154. https://doi.org/10.1016/J.RSE.2013.08.039

Cao, S., Danielson, B., Clare, S., Koenig, S., Campos-Vargas, C., & Sanchez-Azofeifa, A. (2019). Radiometric calibration assessments for UAS-borne multispectral cameras: Laboratory and field protocols. ISPRS Journal of Photogrammetry and Remote Sensing, 149, 132–145. https://doi.org/https://doi.org/10.1016/j.isprsjprs.2019.01.016

Castro Sardiña, L., Irisarri, G., & Texeira, M. (2023). Climate factors rather than human activities controlled NDVI trends across wet meadow areas in the Andes Centrales of Argentina. Journal of Arid Environments, 214, 104983. https://doi.org/10.1016/J.JARIDENV.2023.104983

Chaminda Bandara, W. G., Kasun Prabhath, G. W., Sahan Chinthana Bandara Dissanayake, D. W., Herath, V. R., Roshan Indika Godaliyadda, G. M., Bandara Ekanayake, M. P., Demini, D., & Madhujith, T. (2020). Validation of multispectral imaging for the detection of selected adulterants in turmeric samples. Journal of Food Engineering, 266, 109700. https://doi.org/10.1016/J.JFOODENG.2019.109700

Cui, Z., Wang, Y., Gao, X., Li, J., & Zheng, Y. (2016). Multispectral image classification based on improved weighted MRF Bayesian. Neurocomputing, 212, 75–87. https://doi.org/https://doi.org/10.1016/j.neucom.2016.03.097

Davidson, C., Jaganathan, V., Sivakumar, A. N., Czarnecki, J. M. P., & Chowdhary, G. (2022). NDVI/NDRE prediction from standard RGB aerial imagery using deep learning. Computers and Electronics in Agriculture, 203, 107396. https://doi.org/10.1016/J.COMPAG.2022.107396

Davis, Z., Nesbitt, L., Guhn, M., & van den Bosch, M. (2023). Assessing changes in urban vegetation using Normalised Difference Vegetation Index (NDVI) for epidemiological studies. Urban Forestry & Urban Greening, 88, 128080. https://doi.org/10.1016/J.UFUG.2023.128080

De Abreu Fontes, J., Anzanello, M. J., Brito, J. B. G., Bucco, G. B., Fogliatto, F. S., & Puglia, F. do P. (2021). Combining wavelength importance ranking to the random forest classifier to analyze multiclass spectral data. Forensic Science International, 328, 110998. https://doi.org/10.1016/J.FORSCIINT.2021.110998

Deng, L., Mao, Z., Li, X., Hu, Z., Duan, F., & Yan, Y. (2018). UAV-based multispectral remote sensing for precision agriculture: A comparison between different cameras. ISPRS Journal of Photogrammetry and Remote Sensing, 146, 124–136. https://doi.org/https://doi.org/10.1016/j.isprsjprs.2018.09.008

Doering, D., Vizzotto, M. R., Bredemeier, C., da Costa, C. M., Henriques, R. V. B., Pignaton, E., & Pereira, C. E. (2016). MDE-based Development of a Multispectral Camera for Precision Agriculture. IFAC-PapersOnLine, 49(30), 24–29. https://doi.org/https://doi.org/10.1016/j.ifacol.2016.11.117

Duan, T., Chapman, S. C., Guo, Y., & Zheng, B. (2017). Dynamic monitoring of NDVI in wheat agronomy and breeding trials using an unmanned aerial vehicle. Field Crops Research, 210, 71–80. https://doi.org/https://doi.org/10.1016/j.fcr.2017.05.025

González Bosquet, L. (2003). Los efectos nocivos de la radiación solar y la forma de combatirlos. Offarm, 22(5), 68–76. https://www.elsevier.es/es-revista-offarm-4-articulo-los-efectos-nocivos-radiacion-solar-13047747

Gregg, J. F., Anderson, B. E., & Remillieux, M. C. (2020). Electromagnetic excitation technique for nonlinear resonant ultrasound spectroscopy. NDT & E International, 109, 102181. https://doi.org/10.1016/J.NDTEINT.2019.102181

Hoffmann, H.-J. (2001). Optical Glasses. Encyclopedia of Materials: Science and Technology, 6426–6441. https://doi.org/10.1016/B0-08-043152-6/01137-2

Invernizzi, D., & Lovera, M. (2018). Trajectory tracking control of thrust-vectoring UAVs. Automatica, 95, 180–186. https://doi.org/https://doi.org/10.1016/j.automatica.2018.05.024

Ivushkin, K., Bartholomeus, H., Bregt, A. K., Pulatov, A., Franceschini, M. H. D., Kramer, H., van Loo, E. N., Roman, V. J., & Finkers, R. (2019). UAV based soil salinity assessment of cropland. Geoderma, 338, 502–512. https://doi.org/https://doi.org/10.1016/j.geoderma.2018.09.046

Kaljahi, M. A., Shivakumara, P., Idris, M. Y. I., Anisi, M. H., Lu, T., Blumenstein, M., & Noor, N. M. (2019). An automatic zone detection system for safe landing of UAVs. Expert Systems with Applications, 122, 319–333. https://doi.org/https://doi.org/10.1016/j.eswa.2019.01.024

Lan, Y., Huang, Z., Deng, X., Zhu, Z., Huang, H., Zheng, Z., Lian, B., Zeng, G., & Tong, Z. (2020). Comparison of machine learning methods for citrus greening detection on UAV multispectral images. Computers and Electronics in Agriculture, 171, 105234. https://doi.org/https://doi.org/10.1016/j.compag.2020.105234

L’Annunziata, M. F. (2023). Electromagnetic Radiation: photons. Radioactivity, 709–746. https://doi.org/10.1016/B978-0-323-90440-7.00005-3

Maes, W. H., & Steppe, K. (2019). Perspectives for Remote Sensing with Unmanned Aerial Vehicles in Precision Agriculture. Trends in Plant Science, 24(2), 152–164. https://doi.org/https://doi.org/10.1016/j.tplants.2018.11.007

Maimaitijiang, M., Sagan, V., Sidike, P., Hartling, S., Esposito, F., & Fritschi, F. B. (2020). Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remote Sensing of Environment, 237, 111599. https://doi.org/https://doi.org/10.1016/j.rse.2019.111599

Mikhail, I. E., Hemida, M., Lebanov, L., Astrakhantseva, S., Gupta, V., Hortin, P., Parry, J. S., Macka, M., & Paull, B. (2023). Multi-wavelength deep-ultraviolet absorbance detector based upon program-controlled pulsing light-emitting diodes. Journal of Chromatography A, 1709, 464382. https://doi.org/10.1016/J.CHROMA.2023.464382

Nanda Kumar, K., Vijayan Pillai, A., & Badri Narayanan, M. K. (2021). Smart agriculture using IoT. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2021.02.474

Nandibewoor, A., Hebbal, S. B., & Hegadi, R. (2015). Remote Monitoring of Maize Crop through Satellite Multispectral Imagery. Procedia Computer Science, 45, 344–353. https://doi.org/https://doi.org/10.1016/j.procs.2015.03.158

Orlando, S., Minacapilli, M., Sarno, M., Carrubba, A., & Motisi, A. (2022). A low-cost multispectral imaging system for the characterisation of soil and small vegetation properties using visible and near-infra-red reflectance. Computers and Electronics in Agriculture, 202, 107359. https://doi.org/10.1016/J.COMPAG.2022.107359

Pelaez Carrillo, D. A., & Gualdron Guerrero, O. E. (2020). Caracterización de suelos con potencial productivo en el departamento de Norte de Santander usando cámara multiespectral en un vehículo aéreo no tripulado [Universidad de Pamplona]. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/3330

Pelaez, D. A., Gualdron, O. E., & Castellanos, L. (2020). Analysis of the intensity of electromagnetic radiation for the estimation of vegetation cover. Journal of Physics: Conference Series, 1704, 12008. https://doi.org/10.1088/1742-6596/1704/1/012008

Pelaez, D. A., Gualdron, O. E., & Torres, I. (2020). Soil characterization through remote acquisition of electromagnetic radiation. Journal of Physics: Conference Series, 1587, 12033. https://doi.org/10.1088/1742-6596/1587/1/012033

Pu, H., Kamruzzaman, M., & Sun, D.-W. (2015). Selection of feature wavelengths for developing multispectral imaging systems for quality, safety and authenticity of muscle foods-a review. Trends in Food Science & Technology, 45(1), 86–104. https://doi.org/https://doi.org/10.1016/j.tifs.2015.05.006

Rahiche, A., Hedjam, R., Al-maadeed, S., & Cheriet, M. (2020). Historical documents dating using multispectral imaging and ordinal classification. Journal of Cultural Heritage, 45, 71–80. https://doi.org/10.1016/J.CULHER.2020.01.012

Rodríguez, J. M. (2018). Polarización de la luz: conceptos básicos y aplicaciones en astrofísica. Revista Brasileira de Ensino de Física, 40(4), e4310. https://doi.org/10.1590/1806-9126-rbef-2018-0024

Ruiz-Arias, J. A. (2022). Spectral integration of clear-sky atmospheric transmittance: Review and worldwide performance. Renewable and Sustainable Energy Reviews, 161, 112302. https://doi.org/10.1016/J.RSER.2022.112302

Shafiee, S., Mroz, T., Burud, I., & Lillemo, M. (2023). Evaluation of UAV multispectral cameras for yield and biomass prediction in wheat under different sun elevation angles and phenological stages. Computers and Electronics in Agriculture, 210, 107874. https://doi.org/10.1016/J.COMPAG.2023.107874

Singh, P. J., & Silva, R. de. (2018). Design and implementation of an experimental UAV network. 2018 International Conference on Information and Communications Technology (ICOIACT), 168–173. https://doi.org/10.1109/ICOIACT.2018.8350739

Sun, B., Bi, L., Yang, P., Kahnert, M., & Kattawar, G. (2020). Fundamentals. Invariant Imbedding T-Matrix Method for Light Scattering by Nonspherical and Inhomogeneous Particles, 7–56. https://doi.org/10.1016/B978-0-12-818090-7.00002-4

Suomalainen, J., Oliveira, R. A., Hakala, T., Koivumäki, N., Markelin, L., Näsi, R., & Honkavaara, E. (2021). Direct reflectance transformation methodology for drone-based hyperspectral imaging. Remote Sensing of Environment, 266, 112691. https://doi.org/10.1016/J.RSE.2021.112691

Talaviya, T., Shah, D., Patel, N., Yagnik, H., & Shah, M. (2020). Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial Intelligence in Agriculture, 4, 58–73. https://doi.org/https://doi.org/10.1016/j.aiia.2020.04.002

Verrelst, J., Rivera, J. P., Gitelson, A., Delegido, J., Moreno, J., & Camps-Valls, G. (2016). Spectral band selection for vegetation properties retrieval using Gaussian processes regression. International Journal of Applied Earth Observation and Geoinformation, 52, 554–567. https://doi.org/https://doi.org/10.1016/j.jag.2016.07.016

Walshe, D., McInerney, D., Kerchove, R. Van De, Goyens, C., Balaji, P., & Byrne, K. A. (2020). Detecting nutrient deficiency in spruce forests using multispectral satellite imagery. International Journal of Applied Earth Observation and Geoinformation, 86, 101975. https://doi.org/https://doi.org/10.1016/j.jag.2019.101975

Wang, B., Ren, M., Xia, C., Li, Q., Dong, M., Zhang, C., Guo, C., Liu, W., & Pischler, O. (2022). Evaluation of insulator aging status based on multispectral imaging optimized by hyperspectral analysis. Measurement, 205, 112058. https://doi.org/10.1016/J.MEASUREMENT.2022.112058

Xu, L., Ming, D., Zhang, L., Dong, D., Qing, Y., Yang, J., & Zhou, C. (2023). Parcel level staple crop type identification based on newly defined red-edge vegetation indices and ORNN. Computers and Electronics in Agriculture, 211, 108012. https://doi.org/10.1016/J.COMPAG.2023.108012

Yavru, C. A., Kaleli, M., Üncü, İ. S., Koç, M., & Aldemir, D. A. (2022). Solar and infrared light sensing comparison of Yb/CIGS photodiode. Sensors and Actuators A: Physical, 347, 113973. https://doi.org/10.1016/J.SNA.2022.113973

Yu, Y., Shi, F., Zhang, Y., Li, F., & Han, J. (2024). Optical sensor array for the discrimination of liquors. Journal of Future Foods, 4(1), 48–60. https://doi.org/10.1016/J.JFUTFO.2023.05.004

Yue, J., & Tian, Q. (2020). Estimating fractional cover of crop, crop residue, and soil in cropland using broadband remote sensing data and machine learning. International Journal of Applied Earth Observation and Geoinformation, 89, 102089. https://doi.org/10.1016/J.JAG.2020.102089

Zhang, L., Shi, J., Zhu, Y., Zhang, C., Zhang, Z., & Zheng, J. (2023). An experimental study on monitoring wave profiles with LiDAR. Ocean Engineering, 285, 115436. https://doi.org/10.1016/J.OCEANENG.2023.115436

Zhang, T., Guan, H., Ma, X., & Shen, P. (2023). Drought recognition based on feature extraction of multispectral images for the soybean canopy. Ecological Informatics, 77, 102248. https://doi.org/10.1016/J.ECOINF.2023.102248

Published

August 5, 2023