Contaminantes químicos, biológicos y virológicos en aguas crudas y potables: Métodos de detección
Palabras clave:
Contaminantes, Detección, Análisis, Agua, Impacto, AmbientalSinopsis
La contaminación de los cuerpos naturales de agua es una problemática latente, principalmente en los países con bajo desarrollo tecnológico, donde la inversión económica es limitada y la cultura de disposición de residuos, así como su reciclaje o reutilización por parte de la población, es muy escasa. Esto hace, que se produzcan grandes volúmenes de desechos domésticos y agro-industriales, que en su mayoría son vertidos directamente a los ecosistemas acuáticos sin ningún tratamiento previo; convirtiendo al agua en un vehículo transmisor de contaminantes.
Adicionalmente, la escasez del recurso hídrico a consecuencia del cambio climático se ha incrementado, y las pocas fuentes hídricas que quedan deben ser preservadas y su calidad controlada. Basados en reportes de UNICEF-Colombia, tras un análisis realizado a 1008 planes de desarrollo nacional, en el país existen 502 municipios que no poseen plantas de tratamiento de agua potable (PTAP).
Hoy más que nunca, existe una necesidad imperante de que nuestros patrones de producción y consumo cambien; máxime bajo circunstancias tan difíciles como las que afrontamos en la actualidad, debido a la pandemia por el Sars-COV-2, la cual ha dejado en evidencia que ningún gobierno, incluso en los países más desarrollados e industrializados, existía la preparación, por parte dirigentes y población en general para hacerle frente. Si bien es cierto, esta situación coyuntural nos ha dejado grandes enseñanzas, la afectación al medio ambiente, y en especial, a los ecosistemas acuáticos ha sido dramática, y será un gran desafío afrontarla en los años venideros.
Descargas
Citas
R. Villamizar, R. Ortiz, R. Espinel, y I. Rojas. “Cartilla Educativa: El Agua Recurso Vital”. Edición No.1. Edita Universidad de Pamplona. ISBN978-958-58769-4-1. 2015
A. Azcona, M. Fernández. En: Agua para la Salud. Pasado, Presente y Futuro. Vaquero y Toxqui. Eds. CSIC. 2012. Capítulo 3. Propiedades y funciones biológicas del agua. ISBN: 978-84-00-09572-7. Pp: 33-45
H. Effendi. River water quality preliminary rapid assessment using pollution index. Procedia Environmental Sciences, vol. 33, pp.562 – 567/2016. www.nortedesantander.gov.co
Informe Final Ronda del Río Pamplonita-Cúcuta www.corponor.gov.co.Fecha de consulta 10-01-17.
D. Laguado y L. Torres. Plan de Ordenación y Manejo Ambiental de laC u e n c a d e l R í o P a m p l o n i t a . D i s p o n i b l e e n : https://corponor.gov.co/sitioanterior/index.php/estaticos/49-planes/1934-plan-de-ordenamiento-y-manejo-cuenca-rio-pamplonita. Fecha de consulta 10-04-19
O. Ortíz, R. Villamizar, R. Cáceres. Life cycle assessment of four potable water treatment plants in northeastern Colombia. Revista Ambient & Água, vol, 11 (2), pp. 268-279/2016.
Ministerio de Agricultura. Decreto 1594 de 1984. En cuanto a usos del agua y residuos líquidos.
F. Arduini, S. Cinti, V. Scognamiglio, D. Moscone, and G. Palleschi, "How cutting-edge technologies impact the design of electrochemical (bio)sensors for environmental analysis. A review," Analytica Chimica Acta, vol. 959, pp. 15-42, 3/22/ 2017.
P. J. Landrigan and L. R. Goldman, "Childrens Vulnerability To Toxic Chemicals: A Challenge And Opportunity To Strengthen Health And Environmental Policy," HealthAffairs, vol. 30, no. 5, pp. 842-850/2011.
A. A. Bletsou, J. Jeon, J. Hollender, E. Archontaki, and N. S. Thomaidis, "Targeted and non-targeted liquid chromatography-mass spectrometric workflows for identification of transformation products of emerging pollutants in the aquatic environment," TrAC Trends in Analytical Chemistry, vol. 66, pp. 32-44/2015.
P. B. Tchounwou, C. G. Yedjou, A. K. Patlolla, and D. J. Sutton. " Heavy Metals Toxicity and the Environment". Heavy metals toxicity and the Environment, vol.101, pp. 133-164/2012.
H. Bridle, W. Wang, D. Gavriilidou, F. Amalou, D. P. Hand, and W. Shu, "Static mode microfluidic cantilevers for detection of waterborne pathogens," Sensors and Actuators A: Physical, vol. 247, pp. 144-149, 8/15/ 2016.
C.-C. Liu, Y.-N. Wang, L.-M. Fu, and D.-Y. Yang, "Rapid integrated microfluidic paper-based system for sulfur dioxide detection," Chemical Engineering Journal, vol. 316, pp. 790-796, 5/15/ 2017.
W. Guan, M. Liu, and C. Zhang, "Electrochemiluminescence detection in microfluidic cloth-based analytical devices," Biosensors and Bioelectronics, vol. 75, pp. 247-253, 1/15/ 2016.
R. Burger, L. Amato, and A. Boisen, "Detection methods for centrifugal microfluidic platforms," Biosensors and Bioelectronics, vol. 76, pp. 54-67, 2/15/ 2016.
T.-Y. Chen, T.-H. Yang, N.-T. Wu, Y.-T. Chen, and J.-J. Huang, "Transient analysis of streptavidin-biotin complex detection using an IGZO thin film transistor-based biosensor integrated with a microfluidic channel,"Sensors andActuators B: Chemical, vol. 244, pp. 642-648, 6/2017.
W. Zhou et al., "Ag@AgHPW as a plasmonic catalyst for visible-light photocatalytic degradation of environmentally harmful organic pollutants," Materials Research Bulletin, vol. 48, no. 6, pp. 2308-2316,6/2013.
A. Pahlavan et al., "Application of CdO nanoparticle ionic liquid modified carbon paste electrode as a high sensitive biosensor for square wave voltammetric determination of NADH," Materials Science and Engineering: C, vol. 45, pp. 210-215, 12/1/2014.
D. Li, J. Jia, Y. Zhang, N. Wang, X. Guo, and X. Yu, "Preparation and characterization of Nano-graphite/TiO2 composite photoelectrode for photoelectrocatalytic degradation of hazardous pollutant," Journal of Hazardous Materials, vol. 315, pp. 1-10, 9/5/2016.
C.-H. Lee, N. T. T. Truc, B.-K. Lee, Y. Mitoma, and S. R. Mallampati, "Evaluation of heavy metals in hazardous automobile shredder residue thermal residue and immobilization with novel nano-size calcium dispersed reagent," Journal of Hazardous Materials, vol. 296, pp. 239- 247, 10/15/ 2015.
A. Bobrowski, A. Królicka, M. Maczuga, and J. Zarębski, "A novel screen-printed electrode modified with lead film for adsorptive stripping voltammetric determination of cobalt and nickel," Sensors and Actuators B: Chemical, vol. 191, pp. 291-297, 2/2014.
F. Tan, J. P. Metters, and C. E. Banks, "Electroanalytical applications of screen printed microelectrode arrays," Sensors and Actuators B: Chemical, vol. 181, pp. 454-462, 5/2013.
I. T. Somé, A. K. Sakira, D. Mertens, S. N. Ronkart, and J.-M. Kauffmann, "Determination of groundwater mercury (II) content using a disposable gold modified screen printed carbon electrode," Talanta, vol. 152, pp. 335-340, 5/15/2016.
X. Li et al., "Electrochemical sensing of nicotine using screen-printed carbon electrodes modified with nitrogen-doped graphene sheets,"Journal of Electroanalytical Chemistry, vol. 784, pp. 77-84, 1/1/2017.
N. Lopez-Barbosa, C. Segura, and J. F. Osma, "Electro-Immuno Sensors: Current Developments and Future Trends," International Journal of Biosensors and Bioelectronics, vol. 2, no. 1, pp. 1-6/2017.
N. Lopez-Barbosa, J. D. Gamarra, and J. F. Osma, "The future point-ofcare detection of disease and its data capture and handling," Analytical and Bioanalytical Chemistry, vol. 408, no. 11, pp. 2827-2837, 2016/2016.
N. Lopez-Barrera and J. F. Osma, "Biosensors: Migrating from Clinical to Environmental Industries," Biosensors Journal, vol. 5 (1), p. 1/2017.
B. M. Cummins, F. S. Ligler, and G. M. Walker, "Point-of-care diagnostics for niche applications," Biotechnology Advances, vol. 34, no. 3, pp. 161-176, 5/2016.
A. Dhiman, P. Kalra, V. Bansal, J. G. Bruno, and T. K. Sharma, "Aptamerbased point-of-care diagnostic platforms," Sensors and Actuators B: Chemical, vol. 246, pp.535-553/2017.
Q. Wu et al., "Contamination, toxicity and speciation of heavy metals in an industrialized urban river: Implications for the dispersal of heavy metals," Marine Pollution Bulletin, vol. 104, (12), pp. 153-161, 3/15/ 2016.
J. Sneddon, "Advances in atomic spectroscopy," ed. Greenwich, Conn.: JAI Press, 1992
G. M. Whitesides, "The origins and the future of microfluidics," Nature, 10.1038/nature05058 vol. 442, no. 7101, pp. 368-373, 07/27/print 2006.
J. Kudr, O. Zitka, M. Klimanek, R. Vrba, and V. Adam, "Microfluidic electrochemical devices for pollution analysis − A review," Sensors and Actuators B: Chemical, vol. 246, pp578-590/2017.
W. Jung, A. Jang, P. L. Bishop, and C. H. Ahn, "A polymer lab chip sensor with microfabricated planar silver electrode for continuous and onsite heavy metal measurement," Sensors and Actuators B: Chemical, vol. 155, no. 1, pp. 145-153/2011.
Z. Zou et al., "Environmentally friendly disposable sensors with microfabricated on-chip planar bismuth electrode for in situ heavy metalions measurement," Sensors and Actuators B: Chemical, vol. 134, no. 1, pp. 18-24/2008.
J. Zhou et al., "Fabrication of a microfluidic Ag/AgCl reference electrode and its application for portable and disposable electrochemical microchips," ELECTROPHORESIS, vol. 31, no. 18, pp. 3083-3089/2010
M. Gutiérrez-Capitán, A. Ipatov, Á. Merlos, C. Jiménez-Jorquera, and C. Fernández-Sánchez, "Compact Electrochemical Flow System for the Analysis of Environmental Pollutants", Electroanalysis, vol. 26, no. 3, pp.497-506/2014
J. Shi, F. Tang, H. Xing, H. Zheng, B. Lianhua, and W. Wei, "- Electrochemical detection of Pb and Cd in paper-based microfluidic devices", Journal of Brazilian Chemistry Society, vol. 23 (6), pp.1124-1130/2012.
Z. Nie et al., "Electrochemical sensing in paper-based microfluidic devices," Lab on a Chip, 10.1039/B917150A vol. 10 (4), pp. 477-483/2010
P. K. Sahoo, B. Panigrahy, S. Sahoo, A. K. Satpati, D. Li, and D. Bahadur, "In situ synthesis and properties of reduced graphene oxide/Binanocomposites: As an electroactive material for analysis of heavy metals," Biosensors and Bioelectronics, vol. 43, pp. 293-296/2013.
Z. Li et al., "Square wave anodic stripping voltammetric determination of Cd2+ and Pb2+ at bismuth-film electrode modified with electroreduced graphene oxide-supported thiolated thionine," Talanta, vol. 122, pp. 285-292, 5/2014.
H. Bagheri, A. Afkhami, H. Khoshsafar, M. Rezaei, S. J. Sabounchei, and M. Sarlakifar, "Simultaneous electrochemical sensing of thallium, lead and mercury using a novel ionic liquid/graphene modified electrode,"Analytica ChimicaActa, vol. 870, pp. 56-66, 4/22/ 2015.
Z. Wang, H. Wang, Z. Zhang, X. Yang, and G. Liu, "Sensitive electrochemical determination of trace cadmium on a stannum film/poly(p-aminobenzene sulfonic acid)/electrochemically reduced graphene composite modified electrode," Electrochimica Acta, vol. 120, pp. 140-146/2014.
A. Afkhami, H. Khoshsafar, H. Bagheri, and T. Madrakian, "Construction of a carbon ionic liquid paste electrode based on multi-walled carbon nanotubes-synthesized Schiff base composite for trace electrochemical detection of cadmium," Materials Science and Engineering: C, vol. 35, pp. 8-14/2014.
H. Khani, M. K. Rofouei, P. Arab, V. K. Gupta, and Z. Vafaei, "Multiwalled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: Application to potentiometric monitoring of mercuryion(II)," Journal of Hazardous Materials, vol. 183, no. 13, pp. 402-409, 11/15/2010.
B. C. Janegitz, L. C. S. Figueiredo-Filho, L. H. Marcolino-Junior, S. P. N. Souza, E. R. Pereira-Filho, and O. Fatibello-Filho, "Development of a carbon nanotubes paste electrode modified with crosslinked chitosan for cadmium(II) and mercury(II) determination," Journal of Electroanalytical Chemistry, vol. 660, no. 1, pp. 209-216/2011.
X. Jia, J. Li, and E. Wang, "High-Sensitivity Determination of Lead(II) and Cadmium(II) Based on the CNTs-PSS/Bi Composite Film Electrode," Electroanalysis, vol. 22, no. 15, pp. 1682-1687/2010
F. C. Vicentini, B. C. Janegitz, C. M. A. Brett, and O. Fatibello-Filho, "Tyrosinase biosensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and 1-butyl-3-methylimidazolium chloride within a dihexadecylphosphate film," Sensors and Actuators B: Chemical, vol. 188, pp. 1101-1108, 11/2013.
F. Arduini, C. Majorani, A. Amine, D. Moscone, and G. Palleschi, "Hg2+detection by measuring thiol groups with a highly sensitive screenprinted electrode modified with a nanostructured carbon black film,"ElectrochimicaActa, vol. 56, no. 11, pp. 4209-4215/2011
D. Talarico, F.Arduini,A.Amine, D. Moscone, and G. Palleschi, "Screenprinted electrode modified with carbon black nanoparticles for phosphate detection by measuring the electroactive phosphomolybdate complex," (in eng), Talanta, vol. 141, pp. 267-72/2015.
S. Cinti, S. Politi, D. Moscone, G. Palleschi, and F. Arduini, "Stripping Analysis of As(III) by Means of Screen-Printed Electrodes Modified with Gold Nanoparticles and Carbon Black Nanocomposite," Electroanalysis, vol. 26 (5), pp. 931-939/2014.
S. Cinti, F. Santella, D. Moscone, and F. Arduini, "Hg2+ detection using a disposable and miniaturized screen-printed electrode modified with nanocomposite carbon black and gold nanoparticles," Environmental Science and Pollution Research, vol. 23 (9), pp. 8192-8199/2016.
Y. Wei, R. Yang, J.-H. Liu, and X.-J. Huang, "Selective detection toward Hg(II) and Pb(II) using polypyrrole/carbonaceous nanospheres modified screen-printed electrode," Electrochimica Acta, vol. 105, pp. 218-223/2013.
M. B. Gholivand, A. Azadbakht, and A. Pashabadi, "Simultaneous Determination of Trace Zinc and Cadmium by Anodic Stripping Voltammetry Using a Polymeric Film Nanoparticle Self-Assembled Electrode," Electroanalysis, vol. 23 (2), pp. 364-370/2011.
J.-F. Huang and H.-H. Chen, "Gold-nanoparticle-embedded nafion composite modified on glassy carbon electrode for highly selective detection of arsenic(III)," Talanta, vol. 116, pp. 852-859/2013.
A. Safavi and E. Farjami, "Construction of a carbon nanocomposite electrode based on amino acids functionalized gold nanoparticles for trace electrochemical detection of mercury," Analytica Chimica Acta, vol. 688, no. 1, pp. 43-48/2011.
S. Prakash, T. Chakrabarty, A. K. Singh, and V. K. Shahi, "Silver nanoparticles built-in chitosan modified glassy carbon electrode for anodic stripping analysis of As(III) and its removal from water," ElectrochimiaActa, vol. 72, pp. 157-164/2012.
A. Sánchez, S. Morante-Zarcero, D. Pérez-Quintanilla, I. Sierra, and I. del Hierro, "Development of screen-printed carbon electrodes modified with functionalized mesoporous silica nanoparticles: Application to voltammetric stripping determination of Pb(II) in non-pretreated natural waters," ElectrochimicaActa, vol. 55 (23), pp. 6983-6990/2010.
D. Yang, L. Wang, Z. Chen, M. Megharaj, and R. Naidu, "Voltammetric Determination of Lead (II) and Cadmium (II) Using a Bismuth Film Electrode Modified with Mesoporous Silica Nanoparticles," ElectrochimicaActa, vol. 132, pp. 223-229/2014.
A. Sánchez, S. Morante-Zarcero, D. Pérez-Quintanilla, I. Sierra, and I. del Hierro, "Determination of Hg(II) in natural waters using a carbon paste electrode modified with hybrid mesostructured silica nanoparticles," Sensors and Actuators B: Chemical, vol. 163 (1) pp. 38-43/2012.
H. Lin, M. Li, and D. Mihailovič, "Simultaneous Determination of Copper, Lead, and Cadmium Ions at a Mo6S9-xIx Nanowires Modified Glassy Carbon Electrode Using Differential Pulse Anodic Stripping Voltammetry," ElectrochimicaActa, vol. 154, pp. 184-189/2015.
O. D. Renedo, M. A. Alonso-Lomillo, and M. J. A. Martínez, "Recent developments in the field of screen-printed electrodes and their related applications," Talanta, vol. 73 (2), pp. 202-219/2007.
M. Li, Y.-T. Li, D.-W. Li, and Y.-T. Long, "Recent developments and applications of screen-printed electrodes in environmental assaysA review,"Analytica ChimicaActa, vol. 734, pp. 31-44/2012.
M. Trojanowicz, "Impact of nanotechnology on design of advanced screen-printed electrodes for different analytical applications," TrAC Trends inAnalytical ChemistryA, vol. 84, pp. 22-47/2016.
A. Mandil, R. Pauliukaite, A. Amine, and C. M. A. Brett, "Electrochemical Characterization of and Stripping Voltammetry at Screen Printed Electrodes Modified with Different Brands of Multiwall Carbon Nanotubes and Bismuth Films," Analytical Letters, vol. 45 (4), pp. 395- 407/2012.
S. Sadeghi and A. Garmroodi, "A highly sensitive and selectiveelectrochemical sensor for determination of Cr(VI) in the presence of Cr(III) using modified multi-walled carbon nanotubes/quercetin screenprinted electrode," Materials Science and Engineering: C, vol. 33 (8), pp. 4972-4977/2013.
J.-M. Jian, Y.-Y. Liu, Y.-L. Zhang, X.-S. Guo, and Q. Cai, "Fast and Sensitive Detection of Pb2+ in Foods Using Disposable Screen-Printed Electrode Modified by Reduced Graphene Oxide," Sensors, vol. 13 (10), pp. 13063-13075/2013.
S. S. Hassan et al., "Nafion stabilized ibuprofengold nanostructures modified screen printed electrode as arsenic(III) sensor," Journal of Electroanalytical Chemistry, vol. 682, pp. 77-82/2012.
S. A. Tukur, N. A. Yusof, and R. Hajian, "Linear sweep anodic stripping voltammetry: Determination of Chromium (VI) using synthesized gold nanoparticles modified screen-printed electrode," Journal of Chemical Sciences, vol. 127 (6), pp. 1075-1081/2015.
J.-P. Jasmin, C. Cannizzo, E. Dumas, and A. Chaussé, "Fabrication and characterization of all-covalent nanocomposite functionalized screenprinted voltammetric sensors," Electrochimica Acta, vol. 133, pp. 467-474/2014.
H. Wan, Q. Sun, H. Li, F. Sun, N. Hu, and P. Wang, "Screen-printed gold electrode with gold nanoparticles modification for simultaneous electrochemical determination of lead and copper," Sensors and Actuators B: Chemical, vol. 209, pp. 336-342/2015.
S. Sanllorente-Méndez, O. Domínguez-Renedo, and M. J. ArcosMartínez, "Determination of Arsenic(III) Using Platinum NanoparticleModified Screen-Printed Carbon-Based Electrodes," Electroanalysis, vol. 21 (3-5), pp. 635-639/2009.
L. F. Urrego, D. I. Lopez, K. A. Ramirez, C. Ramirez, and J. F. Osma, "Biomicrosystem design and fabrication for the human papilloma virus 16 detection," Sensors and Actuators B: Chemical, vol. 207, pp. 97-104/2015.
( 2 0 1 5 ) . R e s o l u c i ó n 0 6 3 1 . https://www.minambiente.gov.co/images/normativa/app/resoluciones/d1-res_631_marz_2015.pdf. Fecha de consulta 040318
( 2 0 0 7 ) . R e s o l u c i ó n 0 6 3 1 . https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/Resoluci%C3%B3n_2115_de_2007.pdf. Fecha de consulta 040318
E. González, J. Marrugo, V. Martínez. “El problema de contaminación por Mercurio. Nanotecnología: Retos y Posibilidades para Medición y Remediación”. Publicación de la Red Colombiana de Nanociencia y Nanotecnología. 1ra. Edición. ISBN 978-958-46-6235-4. Pags.202/2015.
Decreto 1594. 1984. Disponible en: www.ideam.gov.co > documents › Dec_1594_1984.pdf. Fecha de consulta 040318.
Resolución 2115. 2007. www.minambiente.gov.co/images/pdf/legislacion_del_agua. Fecha de consulta 04-03-18.
Resolución 0631. 2015. www.aguasdebuga.net/intranet/sites/default/files/resolucion_0631. Fecha de consulta 04-03-18.
H. Effendi. “River water quality preliminary rapid assessment using pollution index”. Procedia Environmental Sciences, vol. 33, pp. 562 –567/2016.
Ministerio de Desarrollo Económico. “Dirección de Agua Potable y Saneamiento Básico Reglamento Técnico del Sector de Agua Potable y aneamiento Básico”. RAS 2000. Título B.
PC. Webster. “Not all that glitters: mercury poisoning in Colombia”. TheLancet infectious diseases, vol. 379, Pp.1379-1380/2012.
Y.C. Reyes, I. Vergara, O.E. Torres, M. Díaz-Lagos, & E.E. González. “Contaminación por metales pesados: Implicaciones en salud, ambiente y seguridad alimentaria”. Revista Ingeniería Investigación y Desarrollo, }vol 16 (2). pp. 66-77/2016.
World Health Organization. “Guidelines for Drinking-Water Quality”. Fourth edition. 2011. Disponible en: apps.who.int/ iris/ bitstream/9789241548151_eng. Fecha de consulta 05-06-18.
Environmental Protection Agency. “National Primary Drinking Water Regulations”. 2009. Disponible en: www.epa.gov/files/npwdr_completetable. Fecha de consulta 05-06-18.
Decreto 2133 de 2016. Disponible en . Fecha de consulta 30-03-19.
Evaluaciones del desempeño ambiental: Colombia 2014. OECD/ECLAC. www.oecd.org > country-reviews > Colombia Highligths spanish web. Fecha de consulta 30-03-19.
E.A.E. Badr, A.A.E. Agrama, S.A.E. Badr. Heavy metals in drinking water and human health, Egyptian Journal of Food Science, vol.41 (3), pp. 210–217/2011.
J.B. Chennaiaha, M.A. Rasheed, D.J. Patil. “Concentration of heavy metals in drinking waterwith emphasis on human health”. International Journal of Plant and Animal Environmental Sciences, vol. 4(2), pp. 205–214/2014.
Vargas N. Diario El Tiempo. Denuncian contaminación con mercurio en aguas de Barrancabermeja. Disponible en www.eltiempo.com/colombia otras ciuda Fecha de consulta 30-03-19.
F.A. Díaz-Arriaga. “Mercurio en la minería del oro: impacto en las fuentes hídricas destinadas para consumo humano”. Revista Salud Pública, vol. 16, pp. 947-957/2014.
J.Arias. “Carbón y Desarrollo en Colombia”. Revista Zero. Universidad Externado de Colombia. 33 ava. Edición ISSN electrónico: 2344-8431/2015.
O. Gómez O, M. Díaz. “¿El uso del carbón contribuye a la emisión de mercurio a la atmósfera? Capítulo del libro El problema de contaminación por Mercurio. Nanotecnología: Retos y Posibilidades para Medición y Remediación”. Publicación de la Red Colombiana de Nanociencia y Nanotecnología. 1ra. Edición. ISBN 978-958-46-6235-4. pp. 87-94/2015.
R.A. Villamizar. “Heavy metals in raw and drinking water”. Journal NanoScience and Technology, vol. 4, pp. 43-45/2016.
D.L. Alonso, S. Latorre, E. Castillo, F.B. Brandã. “Environmental occurrence of arsenic in Colombia: A review”. Environmental Pollution, vol. 186, pp. 272-281/2014.
J. Bundschuh, B. Nath, B. Bhattacharya, P. Liu, C. Armienta, M. Moreno. “Arsenic in the human food chain: The Latin American perspective”. Science of the Total Environmental, vol. 429, pp. 92- 106/2012.
M.A. Barakat “New trends in removing heavy metals from industrial wasterwater”. Arabian Journal of Chemistry, vol. 4, pp. 361-377/2011.
M. Elliot. “Biological pollutants and biological pollution––an increasing cause for concern”. Marine Pollution Bulletin, vol. 46. pp. 275–280/2003.
L. Seunguk, V. Si, C.A. Dulatre, T. Lee, S.Y. Park, S. Bae “Rapid and insitu detection of fecal indicator bacteria in water using simple DNA extraction and portable loop-mediated isothermal amplification (LAMP) PCR methods”. Water Research, vol. 160, pp. 371-379/2019.
B.R. McMinn,A. Korajkic, N.J.Ashbolt. “Evaluation of Bacteroides fragilis GB 124 bacteriophages as novel human-associated faecal indicators in the United States”. Letters Applied Microbiology, vol. 59. pp. 115-121/2014.
E.R. Newall, T.H. Huong, T.P.Auynh, O.Sengtaheuanghough, O. Ribolzi. “A short review of fecal indicator bacteria in tropical aquatic ecosystems: knowledge gaps and future directions”. Frontiers of Microbiology, vol. 6.pp. 308/2015.
A.F. Maheux, V. Dion-Dupont, M.A. Bisson, S. Bouchard, M.J. Rodriguez. “Detection of Escherichia coli colonies on confluent plates of chromogenic media used in membrane filtration”. Journal of Microbiological Methods, vol. 97. pp. 51-5/2014.
Z. Wan, G, Xiao, N. Zhou, Q. Qi, L. Han, Y. Ruan, R. Guo, Z. Zhou.“Comparison of two methods for detection of fecal indicator bacteria used in waterquality monitoring of the Three”. Journal of Environmental Sciences, vol. 38, pp. 42 51/2015.
D. Pelaez, D. Rodriguez, J, Rocha, E. “Estandarización de un método de concentración y detección de virus entéricos en aguas de consumo”. Biomédica, vol.2, pp. 276-282/2010.
N.M. Kiulia, N. Hofstra, L.C. Vermeulen, M.A. Obara, G. Medema, J.B. Rose. “Global Occurrence and Emission of Rotaviruses to Surface Waters”. Pathogens, vol. 4, pp. 229-255/2015.
R. Villamizar, O. Ortíz, E. Darghan. “Quick and easy methodology to determine somatic coliphages as indicators of fecal contamination in a water treatment plant located in northeastern Colombia”. Revista Universidad y Salud, vol. 17,1/2015.
G. Medema, L. Heijnen, G. Elsinga, R. Italiaander. “Presence of SARSCoronavirus-2 in sewage”. Environmental Science & Technology Letters, vol. 7, 511-516/2020.
W. Wang, Y. Xu, R. Gao, R. Lu, K. Han, G. Wu, W. Tan. “Detection of SARS-CoV-2 in different types of clinical specimens”. JAMA, vol. 323, 1843–1844/2020.
Y. Wu, C. Guo, L. Tang, Z. Hong, J. Zhou, X. Dong, X. Yin, Q. Xiao, Y. Tang, X. Qu, L. Kuang, X. Fang, N. Mishra, J. Lu, H. Shan, G. Jiang, X. Huang. “Prolonged presence of SARS-CoV-2 viral RNA in Faecal samples”. Lancet Gastroenterology. 5 (5), 434–435.
M.C. Collivignarelli, M.C. Miinoa, M.C. Abbàc, A. Pedrazzani, R. Bertanza, G. “SARS-CoV-2 in sewer systems and connected facilities”. Process Safety and Environmental Protection. 143, 196–203/2020.
EPM monitorea presencia de coronavirus en aguas residuales del Valle de Aburrá. hƩps://www.epm.com.co/site/epm-monitorea-presencia-decoronavirus-en-aguas-residuales-del-valle-de-aburra. Fecha de consulta 150121.
K.D. Mena. “Waterborne viruses: assessing the risks”. En Bosh A (Ed.) Human Viruses in Water. Elsevier. Amsterdam, Holanda. pp.163- 175/2007.
D. Peláez., B.L. Guzmán., J. Rodríguez., F. Acero, G. Nava, G. “Presencia de Virus entéricos en muestras de agua para el consumo humano en Colombia: desafíos de los sistemas de abastecimiento”. Biomédica, vol. 36, pp. 169-178/2016.
J.H. Lee, G. Cheol, J.I. Kimc, H.A. Yic, C.H. Lee. “Development of a new cell culture-based method and optimized protocol for the detection of enteric viruses”. Journal of Virological Methods, vol. 191. Pp. 16–22/2013.
P.A. Desingu, S.D. Singh, K. Dhama, O.V. Kumar, R. Singh and R.K. Singh. “Development of slide ELISA(SELISA) for detection of four poultry viral pathogens by direct heat fixation of viruses on glass slides”. Journal of Virological Methods. vol. 209, pp. 76–81/2014.
G. Sedmak, D. Bina, J. Macdonald, L. Couillard. “Nine-year study of the occurrence of culturable viruses in source water for two drinking water treatment plants and the influent and effluent of a wastewater treatment plant in Milwaukee, Wisconsin (August 1994 through July 2003)”. Applied Environmental Microbiology. vol. 71, pp.1042-1050/2007.
P. Wyn-Jones. “The detection of waterborne viruses”. En Bosh A (Ed.) Human Viruses in Water. Elsevier. Amsterdam, Holanda. pp. 177-204/2007.
T.M. Fumian, J.P. Leite, A.A. Castello, A. Gaggero, A, M.S. Caillou, M.P Miagostovich. “Detection of rotavirus A in sewage samples using multiplex qPCR and an evaluation of the ultracentrifugation and adsorption-elution methods for virus concentration”. Journal of Virology Methods, vol. 170, pp. 42-46/2010.
A. Negrete, A. Pai, J. Shiloach. “Use of hollow fiber tangential flow filtration for the recovery and concentration of HIV virus-like particles produced in insect cells”. Journal of Virological Methods, vol. 195. pp. 240-246/2014.
S.V. Alavandi, R. Bharathi, S. Kumar, N. Dineshkumar, C. Saravanakumar, J. Rajan. “Tangential flow ultrafiltration for detection of white spot syndrome virus (WSSV) in shrimp pond water”. Journal of Virological Methods, vol. 218. pp, 7-13/2015.
A. Hamza, L. Jurzik, K. Überla, M. Wilhelm. “Methods to detect infectious human enteric viruses in environmental water samples”. International Journal of Hygiene and Environmental Health, vol, 214. pp. 424-436/2011.
J.H. Ha, C. Choi, S. Ha. “Evaluation of immunomagnetic separation method for the recovery of Hepatitis A virus and GI.1 and GII.4 Norovirus strains seeded on oyster and mussel”. Food Environmental Virology. vol.6, pp. 290–296/2014
R. Villamizar, A. Maroto, F.X. Rius. “Improved detection of Candida albicans with carbon nanotube field-effect transistors”. Sensors and Actuators B: Chemical, vol. 136, pp. 451-547/2009.
E. Haramoto, M. Kitajima, H. Katayama, S. Ohgaki. “Real time PCR detection of adenoviruses, polyomaviruses, and torque teno viruses in river water in Japan”. Water Research, vol. 44, pp. 1747–1752/2014.
W. Yang, A.Z. Gu, S.Y. Zeng, D. Li, M. He, H. Shi. “Development of a combined immunomagnetic separation and quantitative reverse transcription-PCR assay for sensitive detection of infectious rotavirus in water samples”. Journal of Microbiological Methods, vol. 84, pp.447–453/2011.
J.H. Ha, C. Choi, S.D. Ha. “Evaluation of immunomagnetic separation method for the recovery of Hepatitis A virus and GI.1 and GII.4 Norovirus strains seeded on oyster and mussel”. Food and Environmental Virology, vol. 6, pp.290–296/2014.
X. Guo, S. Wang, C. Zhao, J. Li, J. Zhong. “An integrated cell absorption process and quantitative PCR assay for the detection of the infectious virus in water”. Journal of Virological Methods, vol. 257, pp.79-84/2018.
S. Parshionikar, I. Laseke, G.S. Fout. “Use of propidium monoazide in reverse transcriptase PCR to distinguish between infectious and noninfectious enteric viruses in water samples”. Applied of Environmental Microbiology, vol. 76, pp. 4318-4326/2010.
Y. Saylan, Ö. Erdem, S. Ünal, A. Denizli. “An Alternative Medical Diagnosis Method: Biosensors for Virus Detection”. Biosensors (Basel), vol, 9. pp. 65/2019.
A. Mokhtarzadeh, R. Eivazzadeh-Keihan, P. Pashazadeh, M. Hejazi, M. de la Guardia. “Nanomaterial-based biosensors for detection of pathogenic virus”. TrAC Trends in Analytical Chemistry, vol. 97, pp. 445- 457/2017.
A. Altintas, M. Gittens, J. Pocock, J.E. Tothill. “Biosensors for waterborne viruses: Detection and removal”. Biochimie, vol. 115, pp. 144- 154/2015.
W. Ackermann. “Bacteriophage observations and evolution”. Journal of Microbiology, vol. 154, pp. 245-251/2003.
Directiva 98/83/CE del Consejo, de 3 de noviembre de 1998, relativa a la calidad de las aguas destinadas al consumo humano. Diario Oficial nº L 330, de 5 de diciembre de 1998.
Colombia. MPS/MAVDT. Ministerio de la protección Social y Ministerio de Ambiente, Vivienda y Desarrollo Territorial de Colombia. Resolución 2115 de 2007. Bogotá DC: Ministerio; 2007.
C. Carreño. “Biotecnología Ambiental de Aguas y Aguas Residuales”. Segunda Edición. Ecoe Ediciones Ltda. Universidad Nacional Mayor de San Marcos. ISBN 978-958-771-344-2, pp. 517/2007.
Horn, Lindsay M et al. “Association between Precipitation and Diarrheal Disease in Mozambique.” International Journal of Environmental Research and Public Health, vol. 15, pp. 709/2018.
S. Ríos-Tobón, R.M. Agudelo-Cadavid, L.A. Gutiérrez-Builes. “Patógenos e indicadores microbiológicos de calidad del agua para consumo humano”. Revista Facultad Nacional de Salud Pública, vol.35, pp. 236-247/2017.
S. Ávila, M. Estupiñán. “Calidad bacteriológica del agua de consumo humano de la zona urbana y rural del municipio de Guatavita. Cundinamarca, Colombia”. Revista Cubana de Higiene y Epidemiología, vol 50(2), pp. 163-168/2010.
J.K. Bradshaw., B.J. Snyder., A. Oladeinde., D. Spidle., M.E. Berrang., R.J. Meinersmann., B. Oakley., B.C. Sidle., K. Sullivan, M. Molina. “Characterizing relationships among fecal indicator bacteria, microbial source tracking markers, and associated waterborne pathogen occurrence in stream water and sediments in a mixed land use”. Water Research, vol 101, pp. 498-509/2016.
J.Ashbolt., O.K. Willie., S. Grabow. “Indicators of microbial water quality 2001. World Health Organization (WHO). Water Quality: Guidelines, Standards and Health. Edited by Lorna Fewtrell and Jamie Bartram. Published by IWAPublishing, London, UK. ISBN: 1 900222 28 0.
Colombia. MPS/MAVDT. Ministerio de la protección Social y Ministerio de Ambiente, Vivienda y Desarrollo Territorial de Colombia. Resolución 2115 de 2007. Bogotá DC: Ministerio; 2007.
APHA. American Public Health Association. Standard methods for the examination of water and wastewater. 20 Ed. American Public Health Association, Washington, D.C. 1998.
R.A. Villamizar., O.O. Ortíz., E. Darghan. “Quick and easy methodology to determine somatic coliphages as indicators of fecal contamination in a water treatment plant located in northeastern Colombia”. Revista Universidad y Salud, vol. 17, pp. 57-68/2015.
Ministerio de Salud (1998). Decreto 475 de 1998. Normas técnicas de calidad del agua potable. Colombia.
Ministerio de la protección Social y Ministerio de Ambiente, Vivienda y Desarrollo Territorial de Colombia. Resolución 2115 de 2007. Bogotá DC: Ministerio; 2007.
D. Peláez., J.A. Rodríguez., E. Rocha., G. Rey. “Estandarización de un método de concentración y detección de virus entéricos en aguas de consumo”. Revista Biomédica, vol. 30, pp. 2/2010.
C. Carreño. “Biotecnología Ambiental de Aguas y Aguas Residuales”. Segunda Edición. Ecoe Ediciones Ltda. Universidad Nacional Mayor de San Marcos. 517pISBN 978-958-771-344-2/2016
M.E.I. Elmahdy, G. Fongaro, M.E. Magri, M.M Petruccio, C.R.M Barardi. “Spatial distribution of enteric viruses and somatic coliphages in a Lagoon used as drinking water source and recreation in Southern Brazil”. International Journal of Hygiene and Environmental Health, vol. 219, pp. 617-625/2016.
A. Steyer., K. Torkar., I. Gutiérrez-Aguirre., M. Poljšak-Prijatelj. “High prevalence of enteric viruses in untreated individual drinking water sources and surface water in Slovenia”. International Journal of Hygiene and Environmental Health, vol. 214, pp. 392-398/2011.
D. Peláez., B.L. Guzmán., J. Rodríguez., F. Acero, G. Nava, G. “Presencia de virus entéricos en muestras de agua para el consumo humano en Colombia: desafíos de los sistemas de abastecimiento”. Biomédica, vol. 36, pp. 169-178/2016.
World Health Organization (WHO). 2014. “Rotavirus”. Downloaded from www.who.int. Fecha de consulta 14-06-17.
W. Ackermann. “Bacteriophage observations and evolution”. Journal of Microbiology, vol. 154, pp. 245-251/2003.
C. Campos.,A. Guerrero., M. Cárdenas. “Removal of bacterial and viral fecal indicator organisms in a waste stabilization pond system in Chocontá, Cundinamarca (Colombia)”. Water Science and Technology, vol. 45, pp. 61-66/2002.
G. Aricapa., J.E. Pérez., D. Benavides., A. López. “Prevalencia de colifagos en el agua del acueducto de la Vereda La cabaña del Municipio de Manizales”. Biosalud, vol. 14, pp. 28-37/2005.
G.A. Gaviria., M. González., J.O. Castaño. “Técnica para aislamiento de bacteriófagos específicos para E. coli DH5α a partir de aguas residuales”. Revista MVZ Córdoba, vol. 17, pp. 2852-2860/2012.
R.A. Villamizar., O.O. Ortíz., E. Darghan. “Quick and easy methodology to determine somatic coliphages as indicators of fecal contamination in a water treatment plant located in northeastern Colombia”. Revista Universidad y Salud, vol. 17, pp. 57-68/2015.
K. Lee., H. Lee., S. Ha. “Comparative Analysis of Viral Concentration Methods for Detecting the HAV Genome Using Real-Time RT-PCR Amplification”. Food and Environmental Virology, vol. 4, pp. 68-72/2012.
J.H. Ha., C. Choi., S.D. Ha. “Evaluation of Immunomagnetic Separation Method for the Recovery of Hepatitis A Virus and GI.1 and GII.4 Norovirus Strains Seeded on Oyster and Mussel”. Food and Environmental Virology, vol. 6, pp. 290-296/2014.
E. Haramoto., M. Kitajima., H. Katayama, S. Ohgaki. “Real-time PCR detection of adenoviruses, polyomaviruses, and torque tenoviruses in river water in Japan”. Water Research, vol. 44, pp. 1747-1752/2010.
W. Yang.,A.Z. Gu., S.Y. Zeng., D. Li., M. He., H.C. Shi. “Development of a combined immunomagnetic separation and quantitative reverse transcription-PCR assay for sensitive detection of infectious rotavirus in water samples”. Journal of Microbiological Methods, vol. 84, 99. 447-453/2011.
R. Villamizar., J. Osma., O. Ortíz. “New technique for direct fluoroimmunomagnetic detection of Rotavirus in water samples”. Journal Water and Health, vol. 15, pp. 932-941/2017.
N. Boudaud., C. Machinal., F. David., A. Bourdonnec., J. Jossent., F. Bakanga., F. Arnal., M.P. Jaffrezic., S. Oberti., C. Gantzer. “Removal of MS2, Qb and GA bacteriophages during drinking water treatment at pilot scale”. Water Research, vol. 46, pp. 2651-2664/2012.
D.J. Rowlands. “Human hepatitis A virus is united with a host of relations”. Proceedings of the National Academy of Sciences vol. 112,pp.15010-15011/2015.
H. Zhang., S. Williams., M. Zborowski, J. Chalmers. “Binding Affinities/Avidities of Antibody–Antigen Interactions: Quantification and Scale-Up Implications”. Biotechnology and BioEngenniering, vol. 95, pp. 5/2006.
Mathew D., Gautum R. Rotavirus. Clinics in Laboratory Medicine, vol.35, pp.363-91/2015.
C.J. Woodall. “Waterborne Disease. What are the primary killers”.Desalination, vol. 248, pp. 616-621/2009.
OMS. Guidelines for Drinking Water Quality. 2011. Fourth Edition.Volume 1 GGG
Unite Nation. “Millennium development goals (Mdgs)”. New York, 2012. A c c e s o e n 0 4 - 0 6 - 2 0 1 5 . O n l i n e w e b e n : https://www.un.org/millenniumgoals/bkgd.shtml
M.T. Ronderos. “La infancia, el agua y el saneamiento básico en los planes de desarrollo departamentales y municipales: la planeación local, una oportunidad para que los niños, las niñas y los adolescentes del país tengan un medio ambiente adecuado para su desarrollo”. Publisher Procuraduría General de la Nación. ISBN 9589784607, 9789589784600.pp. 162 páginas, 2006.
A.Ahmadi, L. Tiruta-Barna. “AProcess Modelling-Life CycleAssessment - MultiObjective Optimization tool for the eco-design of conventional treatment processes of potable water”. Journal of Cleaner Production, vol. 100, pp.116–125/2015.
G. Ribera, F. Clarens, X. Martínez-Lladó, I. Jubany, V. Martí, M. Rovira. “Life cycle and human health risk assessments as tools for decision making in the design and implementation of nanofiltration in drinking water treatment plants”. Science of the Total Environment, vol. 466, pp. 377-386/2014.
S. Khan, M. Shahnaz, N. Jehan, S. Rehman, M.T. Shai, I. Din. “Drinking water quality and human health risk in Charsadda district, Pakistan”. Journal of Cleaner Production, vol. 60, pp. 93–101/ 2013.
L.A. Kulay, R.S. Viñas, I. Hespanhol. “Avaliação de desempenho ambiental de sistemas para fornecimento de água quente para uso doméstico”. RevistaAmbiente & Água, vol. 10(2), pp. 386-401/2015.
M. El-Sayed, N.P. Van der Steen, K. Abu-zeid, K. Vairavomoorthy. “Towards sustainability in urban water: a life cycle analysis of the urban water system of Alexandria City, Egypt”. Journal of Cleaner Production, vol. 18, pp. 1100–1106/2010.
ISO, International Organisation for Standardisation. “ISO 14040: Environmental Management – Life Cycle Assessment Principles and Framework. ISO”, Geneva, Switzerland, 2006.
J.R. Chacón. “Historia ampliada y comentada del análisis de ciclo de vida (ACV) Con una bibliografía selecta”. Revista de la Escuela Colombiana de Ingeniería N° 72. ISSN 0121-5132. Pp. 37-70/2008
O.O. Ortíz, F. Castells, G. Sonnemann. “Sustainability assessment within the residential building sector: a practical life cycle method applied in a developed and a developing country”. VDM Publishing ISBN: 9788469307236. pp. 220/2010
O.O. Ortiz, R.A. Villamizar, R.G. García-Cáceres. “Life cycle assessment of four potable water treatment plants in northeastern Colombia”. Revista Ambiente eAgua, vol.11, pp. 268-278/2016
A. Bonton, C. Bouchard, B. Barbeau, S. Jedrzejak. “Comparative life cycle assessment of water treatment plants”. Desalination, vol. 284, pp. 42–54/2013.
Z. Jin Zhou, V.W.C. Chang, A.G. Fane. “Life Cycle Assessment for desalination: A review on methodology feasibility and reliability”. Water Research, vol. 61(15), pp. 210–223/2014.
M. Meneses, J.C. Pasqualino, F. Castells. “Environmental assessment of urban wastewater reuse: Treatment alternatives and applications”. Chemosphere, vol. 81, pp. 266-272/2010.
H.D.M. Sombekke, D.K. Voorhoeve, P. Hiemstra. “Environmental impact assessment of groundwater treatment with nanofiltration”. Desalination, vol. 113, pp. 293-29/1997
J.C. Pasquealino, M. Meneses, F. Castells. “Life Cycle Assessment of Urban Wastewater Reclamation and Reuse Alternatives”. Journal of Industrial Ecology, vol. 15, pp. 49-63/2011.
G. Ribera, F. Clarens, X. Martínez-Lladó, I. Jubany, V. Martí, M. Rovira. “Life cycle and human health risk assessments as tools for decision making in the design and implementation of nanofiltration in drinking water treatment plants”. Science of The Total Environment, vol. 466, pp.377–386/2014.
F. Vince, E. Aoustin, P. Breant, F. Marechal. “LCA tool for the environmental evaluation of potable water production”. Desalination, vol. 220, pp. 37–56/2008.
E. Friedrich. “Life-cycle assessment as an environmental management tool in the production of potable water”. Water Science Technology, vol.46, pp. 29-36/2012.
P.K. Mohapatra, M. A. Siebel, H. J. Gijzen, J. P. Van der Hoek, C. A. Groot. “Improving eco-efficiency of Amsterdam water supply: A LCA approach”. Journal of Water Supply: Research and Technology – AQUA,vol. 51, pp. 217-227/2002.
B. Godskesen, M. Hauschild, M. Rygaard, K. Zambrano, H.J. Albrechtsen. “Life-cycle and freshwater withdrawal impact assessment of water supply technologies”. Water Research, vol. 47, pp. 2363-74/2013.
M.J. Amores, M. Meneses, J. Pasqualino, A. Antón, F. Castells. “Environmental assessment of urban water cycle on Mediterranean conditions by LCA approach”. Journal of Cleaner Production, vol. 43, pp.84–92/2013.
O.O. Ortíz, F. Castells, G. Sonnemann. “Sustainability in the construction industry: A review of recent developments based on LCA”. Construction and Building Materials, vol. 23, pp. 28–39/2009.
O.O. Ortíz, R.A. Villamizar, J.M. Rangel. “Applying life cycle management of colombian cocoa production”. Food Science and Technology, vol. 34, pp. 62-68/2014.
O.O. Ortíz, F. Castells, G. Sonnemann. “Life cycle assessment of two dwellings: One in Spain, a developed country, and one in Colombia, a country under development”. Science of The Total Environment, vol. 408,pp. 2435–2443/2010.
A. Antón. “Análisis de Ciclo de Vida Aplicado a Horticultura Protegida. Cuaderno de Estudios Agroalimentarios”. Pp. 211-226. ISSN 2173-7568. 2012.
J.B. Guinée, M. Gorrée, R. Heijungs, G. Huppes, R. Kleinjn, L. Van Oers, S.A. Wegener, S. Suh, H.A. Udo de Haes, H. de Bruign, R. Van Duin, M.A.J. Huijbregts. “Life Cycle Assessment: An Operational Guide to the ISO Standards”. KluwerAcademic Publishers, Dordrecht (NL). 2002.
R. Frischknecht, N. Jungbluth, H.J. Althaus, R. Hischier, G. Doka, C.H. Bauer, R. Dones, T. Nemecek, S. Hellweg, S. Humbert, M. Margni, T. Koellner, Y. Loerincik. “Implementation of life cycle impact assessment methods. Data v2.0”. Ecoinvent report No.3. 2007. On line https://www.un.org/millenniumgoals/bkgd.shtml
A. Bonton, C. Bouchard, B. Barbeau, S. Jedrzejak. “Comparative life cycle assessment of water treatment plants”. Desalination, vol 284, pp. 42-54/2012.
W.V. Jin Zhou, W.C. Chang, G.F. Anthony. “Life Cycle Assessment for desalination: A review on methodology feasibility and reliability”. Water Research, vol61, pp. 210-223/2014.
M. Meneses, J. Pasqualino, Castells F. “Environmental assessment of urban wastewater reuse: Treatment alternatives and applications”. Chemosphere vol 81, (2), pp. 266-272/2010.
H.D.M.Sombekke, D.K. Voorhoeve, P. Hiemstra. “Environmental impact assessment of groundwater treatment with nanofiltration”. Desalination, vol 113 (2-3), pp. 293-296/1997.
M. Meneses, M.J. Amores, J. Pasqualino, A. Anton, F. Castells. "Environmental assessment of urban water cycle on Mediterranean conditions by LCA approach." Journal of Cleaner Production, vol 43, pp. 84-28/2013.
G. Ribera, F. Clarens, X. Martínez-Lladó, I. Jubany, V. Martí, M. Rovira. “Life cycle and human health risk assessments as tools for decision making in the design and implementation of nanofiltration in drinking water treatment plants”. Science of the Total Environment, vol 466-467, pp. 377-386/2014.CAPÍTULO VIIIANÁLISIS DEL IMPACTO AMBIENTAL.
F. Vince, E. Aoustin, P. Bréant, F. Marechal. “LCA tool for the environmental evaluation of potable water production”. Desalination, vol. 220 (1-3), pp. 37-56/2008
E. Friedrich. “Life-cycle assessment as an environmental management tool in the production of potable water”. Water Science and Technology, vol 46(9), pp. 29-36/2002.
P. K. Mohapatra, M. A. Siebel, H. J. Gijzen, J. P. Van del Hoek, C.A. Groot. “Improving eco-efficiency of Amsterdam water supply: A LCA approach”. Journal of Water Supply: Research and Technology-Aqua, vol, 51(4), pp. 217–227/2002.
RPS-QUALITAS “Métodos de Muestreo” Consultoría de Calidad y L a b o r a t o r i o S. L. E n l í n e a : http://www.rpsqualitas.es/documentacion/dowloads/ensayos/metodos_de_muestreo.pdf.
R. Frischknecht, N. Jungbluth. “Implementation of Life Cycle Impact Assessment Methods Data v2.0. ecoinvent”. esu-services.ch > download > publicLCl > 03_LCIA-Implementation. Fecha de acceso 08-02-2017.
Universidad de Leiden. Software y datos. “Que es el CML 2001” http://cml.leiden.edu/software/software-cmla-html#how-to-get-cmlca.
Manual de Usuario LCA-manager versión 1.3, simple efficient solutions. E n l í n e a: h t t p: / / w w w. s i m p p l e. c o m / w p -content/uploads/2013/12/Manual_LCAm.pdf. Fecha de acceso 11/11/2016
NORMA TÉCNICA NTC-ISO COLOMBIANA 14040 Gestión Ambiental. Análisis de ciclo de vida. Principios y marco de referencia. En línea: http://www.fedebiocombustibles.com/files/NTC-ISO%2014040.

Descargas
Publicado
Versiones
Colección
Categorías
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.