Testing Electroweak Theory and Short Baseline Anomalies with Neutrinos

Autores/as

Blanca Cecilia Cañas Orduz
Universidad de Pamplona
https://orcid.org/0000-0002-7334-5304
Víctor Saúl Basto González
Universidad de Pamplona
https://orcid.org/0000-0002-1642-0523

Palabras clave:

Prueba, Teoría, Anomalía, Neutrinos

Sinopsis

Al leer este libro, el lector conocerá la extraordinaria historia de una de las partículas fundamentales que componen nuestro universo: el neutrino. Los lectores comprenderán cómo el estudio teórico y experimental de las interacciones de los neutrinos con la materia ha sido de gran importancia para establecer la teoría electrodébil, que describe la fuerza electromagnética y la fuerza débil, y comprenderán las propiedades de los neutrinos.

Una vez que hayamos establecido las bases del Modelo Estándar Electrodébil, continuaremos estudiando la dispersión de neutrinos y electrones a bajas energías. Esta investigación nos permitirá investigar uno de los parámetros fundamentales del Modelo Estándar Electrodébil, el ángulo de mezcla débil. Históricamente, el análisis de las interacciones de los neutrinos con la materia desde una perspectiva cuantitativa (realizando un recuento total de las interacciones de los neutrinos y/o un recuento parcial por intervalo de energía) ha llevado al descubrimiento del fenómeno de las oscilaciones de los neutrinos.

Este fenómeno constituye la primera evidencia directa de una nueva física más allá del Modelo Estándar de partículas elementales, al menos en su versión mínima. Veremos que el fenómeno de las oscilaciones de neutrinos (el cambio en el estado de interacción de los neutrinos con la materia durante su propagación) puede explicarse porque los neutrinos son partículas masivas y los estados de interacción son una superposición de estados con un estado definido. masa.

Paralelamente a la consolidación del modelo de oscilación de tres neutrinos activos, hoy en día hay una serie de anomalías en los experimentos de oscilación de neutrinos que son posibles indicios de fenómenos oscilatorios que involucran una nueva partícula que debe ser un nuevo neutrino masivo con las páginas de este libro. presentaremos estas anomalías y acercarse a ellos, teniendo en cuenta la anomalía del galio observada experimentalmente y la anomalía del reactor.

El análisis de datos experimentales en busca de parámetros relacionados con interacciones débiles o parámetros relacionados con nueva física se realiza utilizando herramientas estadísticas. Por ello, a través de las páginas de este libro, el lector conocerá las herramientas necesarias para realizar análisis estadísticos que nos permitirán realizar pruebas de precisión dentro del Modelo Estándar y profundizar en el estudio de las propiedades del neutrino. Por ejemplo, aprenderemos a realizar análisis estadísticos que nos permitirán obtener límites al ángulo de mezcla débil con la ayuda de los resultados experimentales de la dispersión electron-neutrino, y aprenderemos a realizar el análisis estadístico de la anomalía del Galio y la anomalía del reactor para poner límites a la posible nueva división de masa ∆m2 y a los nuevos ángulos de mezcla.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aad, G., & et al. (2012). Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B, 716, 1–29. arXiv:1207.7214. doi: 10.1016/j.physletb.2012.08.020

Aad, G., & et al. (2015). Combined Measurement of the Higgs Boson Mass in pp Collisions at√s = 7 and 8 TeV with the ATLAS and CMS Experiments. Phys. Rev. Lett., 114, 191803. arXiv:1503.07589. doi:10.1103/PhysRevLett.114.191803

Abdurashitov, D. N., & et al. (1996). The Russian-American gallium experiment (SAGE) Cr neutrino source measurement. Phys. Rev. Lett., 77,4708–4711. doi: 10.1103/PhysRevLett.77.4708

Abdurashitov, J. N., & et al. (1999). Measurement of the response of the Russian-American gallium experiment to neutrinos from a Cr-51 source. Phys. Rev. C, 59, 2246–2263. arXiv:hep-ph/9803418. doi: 10.1103/PhysRevC.59.2246

Abdurashitov, J. N., & et al. (2006). Measurement of the response of a Ga solar neutrinon experiment to neutrinos from an Ar-37 source. Phys. Rev. C, 73, 045805. arXiv:nucl-ex/0512041. doi: 10.1103/PhysRevC.73.045805

Abdurashitov, J. N., & et al. (2009). Measurement of the solar neutrino capture rate with gallium metal. III: Results for the 2002–2007 data-taking period. Phys. Rev. C, 80, 015807. arXiv:0901.2200. doi: 10.1103/PhysRevC.80.015807

Abe, K., & et al. (2000). A High precision measurement of the left-right Z boson cross-section asymmetry. Phys. Rev. Lett., 84, 5945–5949. arXiv:hep-ex/0004026. doi: 10.1103/PhysRevLett.84.5945

Acero, M. A., & et al. (2022, 3). White Paper on light sterile Neutrino Searches and Related Phenomenology. arXiv:2203.07323. (e-print)

Acero, M. A., Giunti, C., & Laveder, M. (2008). Limits on nu(e) and anti-nu(e) disappearance from Gallium and reactor experiments. Phys. Rev. D, 78, 073009.arXiv:0711.4222. doi: 10.1103/PhysRevD.78.073009

Agarwalla, S. K., & Huber, P. (2011). Potential measurement of the weak mixing angle with neutrino-electron scattering at low energy. JHEP, 08, 059. arXiv:1005.1254. doi: 10.1007/JHEP08(2011)059

Aguilar-Arevalo, A., & et al. (2001). Evidence for neutrino oscillations from the observation of νe appearance in a νµ beam. Phys. Rev. D, 64, 112007. arXiv:hep-ex/0104049. doi: 10.1103/PhysRevD.64.112007

Aguilar-Arevalo, A. A., & et al. (2007). A Search for ElecNeutrino Appearance at the ∆m2 ~ 1eV2 Scale. Phys. Rev. Lett., 98, 231801. arXiv:0704.1500. doi:10.1103/PhysRevLett.98.231801

Aguilar-Arevalo, A. A., & et al. (2009a). The MiniBooNE Detector. Nucl. Instrum. Meth. A, 599, 28–46. arXiv:0806.4201. doi: 10.1016/j.nima.2008.10.028

Aguilar-Arevalo, A. A., & et al. (2009b). The Neutrino Flux prediction at MiniBooNE. Phys. Rev. D, 79, 072002. arXiv:0806.1449. doi: 10.1103/PhysRevD.79.072002

Aguilar-Arevalo, A. A., & et al. (2021). Updated MiniBooNE neutrino oscillation results with increased data and new background studies. Phys. Rev. D, 103(5), 052002. arXiv:2006.16883. doi: 10.1103/PhysRevD.103.052002

Aharmim, B., & et al. (2013). Combined Analysis of all Three Three Phases of Solar Neutrino Data from the Sudbury Neutrino Observatory. Phys. Rev. C, 88, 025501. arXiv:1109.0763. doi: 10.1103/PhysRevC.88.025501

Ahmad, Q. R., & et al. (2002). Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory. Phys. Rev. Lett., 89, 011301. arXiv:nucl-ex/0204008. doi: 10.1103/PhysRevLett.89.011301

Aker, M., & et al. (2019). Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN. Phys. Rev. Lett., 123(22), 221802. arXiv:1909.06048. doi: 10.1103/PhysRevLett.123.221802

Aker, M., & et al. (2021). Analysis methods for the first KATRIN neutrino-mass measurement. Phys. Rev.D, 104(1), 012005. arXiv:2101.05253. doi:10.1103/PhysRevD.104.012005

Aker, M., & et al. (2022). Direct neutrino-mass measureement with sub-electronvolt sensitivity. Nature Phys., 18(2), 160–166. arXiv:2105.08533. doi:10.1038/s41567-021-01463-1

Akhmedov, E. (2019, 1). Quantum mechanics aspects and subtleties of neutrino oscillations. In International Conference on History of the Neutrino: 1930-2018. arXiv:1901.05232.

ALEPH, & et al. (2010, 12). Precision Electroweak Measurements and Constraints on the Standard Model. arXiv:1012.2367. (e-print)

Allemandou, N., & et al. (2018). The STEREO Experiment. JINST, 13(07), P07009. doi: 10.1088/1748-0221/13/07/P07009

Allen, R. C., & et al. (1993). Study of electron-neutrino electron elastic scattering at LAMPF. Phys. Rev. D, 47, 11–28. doi: 10.1103/PhysRevD.47.11

Allison, W. W. M., & et al. (1999). The Atmospheric neutrino flavor ratio from a 3.9 fiducial kiloton year exposure of Soudan-2. Phys. Lett. B, 449, 137–144. arXiv:hep-ex/9901024. doi: 10.1016/S0370-2693(99)00056-8

Almazán, H., & et al. (2018). Sterile Neutrino Constraints from the STEREO Experiment with 66 Days of Reactor-On Data. Phys. Rev. Lett., 121(16), 161801. doi: 10.1103/PhysRevLett.121.161801

Almazán, H., & et al. (2020). Improved sterile neutrino contraints from the STEREO experiment with 179 days of reactor-on data. Phys. Rev. D, 102(5), 052002. doi: 10.1103/PhysRevD.102.052002

Almazán, H., & et al. (2023). STEREO neutrino spectrum of 235U fission rejects sterile neutrino hypothesis. Nature, 613(7943), 257–261. doi: 10.1038/s41586-022-05568-2

Ambrosio, M., & et al. (1998). Measurement of the atmospheric neutrino induced upgoing muon flux using MACRO. Phys. Lett. B, 434, 451–457. arXiv:hep-ex/9807005.doi: 10.1016/S0370-2693(98)00885-5

Amsler, C., & et al. (1997). The MUNU experiment, general description. Nucl. Instrum. Meth. A, 396, 115–129. doi: 10.1016/S0168-9002(97)00724-9

An, F. P., & et al. (2017). Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay. Phys. Rev. Lett., 118(25), 251801. doi: 10.1103/PhysRevLett.118.251801

Anselmann, P., & et al. (1995). First results from the Cr-51 neutrino source experiment with the GALLEX detector. Phys. Lett. B, 342, 440–450. doi:10.1016/0370-2693(94)01586-2

Anthony, P. L., & et al. (2005). Precision measurement of the weak mixing angle in Moller scattering. Phys.Rev. Lett., 95, 081601. arXiv:hep-ex/0504049. doi: 10.1103/PhysRevLett.95.081601

Apollonio, M., & et al. (1999). Limits on neutrino oscillations from the CHOOZ experiment. Phys. Lett. B, 466, 415–430. arXiv:hep-ex/9907037. doi: 10.1016/S0370-2693(99)01072-2

Armbruster, B., & et al. (2002). Upper limits for neutrino oscillations muon-anti-neutrino electron anti-neutrino from muon decay at rest. Phys. Rev. D,65, 112001. arXiv:hep-ex/0203021. doi: 10.1103/PhysRevD.65.112001

Ashie, Y., & et al. (2004). Evidence for an oscillatory signature in atmospheric neutrino oscillation. Phys. Rev. Lett., 93, 101801. arXiv:hep-ex/0404034. doi: 10.1103/PhysRevLett.93.101801

Ashtari Esfahani, A., & et al. (2017). Determining the neutrino mass with cyclotron radiation emission spectroscopy—Project 8. J. Phys. G, 44(5), 054004.arXiv:1703.02037.doi: 10.1088/1361-6471/aa5b4f

Athanassopoulos, C., & et al. (1997). The Liquid scintillator neutrino detector and LAMPF neutrino source. Nucl. Instrum. Meth. A, 388, 149–172. arXiv:nucl-ex/9605002. doi: 10.1016/S0168-9002(96)01155-2

Auerbach, L. B., & et al. (2001). Measurement of electron - neutrino - electron elastic scattering. Phys. Rev.D, 63, 112001. arXiv:hep-ex/0101039. doi:10.1103/PhysRevD.63.112001

Bahcall, J. N. (1997). Gallium solar neutrino experiments: Absorption cross-sections, neutrino spectra, and predicted event rates. Phys. Rev. C, 56, 3391–3409. arXiv:hep-ph/9710491. doi: 10.1103/PhysRevC.56.3391

Bahcall, J. N., Bahcall, N. A., & Shaviv, G. (1968). Present status of the theoretical predictions for the Cl-36 solar neutrino experiment. Phys. Rev. Lett., 20, 1209–1212. doi: 10.1103/PhysRevLett.20.1209

Bahcall, J. N., Kamionkowski, M., & Sirlin, A. (1995). Solar neutrinos: Radiative corrections in neutrino - electron scattering experiments. Phys. Rev. D, 51, 6146–6158. (arXiv:astro-ph/9502003) doi: 10.1103/PhysRevD.51.6146

Bahcall, J. N., & Pena-Garay, C. (2004). Solar models and solar neutrino oscillations. New J. Phys., 6, 63. arXiv:hep-ph/0404061.doi: 10.1088/1367-2630/6/1/063

Bahcall, J. N., & Pinsonneault, M. H. (2004). What do we (not) know theoretically about solar neutrino fluxes? Phys. Rev. Lett., 92, 121301. arXiv:astro-ph/0402114. doi: 10.1103/PhysRevLett.92.121301

Bak, G., & et al. (2019). Fuel-composition dependent reactor antineutrino yield at RENO. Phys. Rev. Lett., 122(23), 232501. doi: 10.1103/PhysRevLett.122.232501

Ball, R. D., Del Debbio, L., Forte, S., Guffanti, A., Latorre, J. I., Piccione, A., . . . Ubiali, M. (2009). Precision determination of electroweak parameters and the strange content of the proton from neutrino deep-inelastic scattering. Nucl. Phys. B, 823, 195–233. arXiv:0906.1958. doi: 10.1016/j.nuclphysb.2009.08.003

Barinov, V. V., & et al. (2022, 1). A Search for Electron Neutrino Transitions to Sterile States in the BEST Experiment. arXiv:2201.07364. (e-print)

Barish, B. C., Bartlett, J. F., Brown, K. W., Buchholz, D.,Jacquet, F., Merritt, F. S., . . . Krafczyk, G. (1975). Neutral Currents in High-Energy Neutrino Collisions: An Experimental Search. Phys. Rev. Lett., 34, 538. doi: 10.1103/PhysRevLett.34.538

Barranco, J., Miranda, O. G., & Rashba, T. I. (2008). Improved limit on electron neutrino charge radius through a new evaluation of the weak mixing angle. Phys. Lett. B, 662, 431–435. arXiv:0707.4319. doi: 10.1016/j.physletb.2008.03.039

Bennett, S. C., & Wieman, C. E. (1999). Measurement of the 6S 7S transition polarizability in atomic cesium and an improved test of the Standard Model. Phys. Rev. Lett., 82, 2484–2487. arXiv:hep-ex/9903022. ([Erratum: Phys.Rev.Lett 82, 4153 (1999), Erratum: Phys.Rev.Lett. 83, 889 (1999)]) doi: 10.1103/PhysRevLett.82.2484

Bentz, W., Cloet, I. C., Londergan, J. T., & Thomas, A. W. (2010). Reassessment of the NuTeV determination of the weak mixing angle. Phys. Lett. B, 693, 462–466. arXiv:0908.3198. doi: 10.1016/j.physletb.2010.09.001

Benvenuti, A., & et al. (1974). Observation of Muonless Neutrino Induced Inelastic Interactions. Phys. Rev.Lett., 32, 800–803. doi: 10.1103/PhysRevLett.32.800

Benvenuti, A. C., & et al. (1976). Evidence for Parity Nonconservation in the Weak Neutral Current. Phys. Rev. Lett., 37, 1039. doi: 10.1103/PhysRevLett.37.1039

Bethe, H., & Peierls, R. (1934). The ’neutrino’. Nature, 133, 532. doi: 10.1038/133532a0

Boehm, F., & et al. (2001). Final results from the Palo Verde neutrino oscillation experiment. Phys. Rev. D, 64, 112001. arXiv:hep-ex/0107009. doi: 10.1103/PhysRevD.64.112001

Brown, L. M. (1978). The idea of the neutrino. Phys. Today, 31N9, 23–28. doi: 10.1063/1.2995181

Cañas, B. C., Garcés, E. A., Miranda, O. G., & Parada, A. (2018). The reactor antineutrino anomaly and low energy threshold neutrino experiments. Phys. Lett. B, 776, 451–456. arXiv:1708.09518. doi: 10.1016/j.physletb.2017.11.074

Canas, B. C., Garces, E. A., Miranda, O. G., Tortola, M., & Valle, J. W. F. (2016). The weak mixing angle from low energy neutrino measurements: a global update. Phys. Lett. B, 761, 450–455. arXiv:1608.02671. doi: 10.1016/j.physletb.2016.08.047

Chadwick, J. (1914). The intensity distribution in the magnetic spectrum of beta particles from radium (B + C). Verh. Phys. Gesell., 16, 383–391.

Chadwick, J. (1932). Possible Existence of a Neutron. Nature, 129, 312. doi: 10.1038/129312a0

Chatrchyan, S., & et al. (2012). Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC. Phys. Lett. B, 716, 30–61. arXiv:1207.7235. doi: 10.1016/j.physletb.2012.08.021

Cleveland, B. T., Daily, T., Davis, R., Jr., Distel, J. R., Lande, K., Lee, C. K., . . . Ullman, J. (1998). Measurement of the solar electron neutrino flux with the Homestake chlorine detector. Astrophys. J., 496, 505–526. doi: 10.1086/305343

Conrad, J. M., Link, J. M., & Shaevitz, M. H. (2005). Precision measurement of sin**2 theta(W) at a reactor. Phys. Rev. D, 71, 073013. arXiv:hep-ex/0403048. doi: 10.1103/PhysRevD.71.073013

Cowan, C. L., Reines, F., Harrison, F. B., Kruse, H. W., & McGuire, A. D. (1956). Detection of the free neutrino: A Confirmation. Science, 124, 103–104.doi: 10.1126/science.124.3212.103

Czarnecki, A., & Marciano, W. J. (1996). Electroweak radiative corrections to polarized Moller scattering asymmetries. Phys. Rev. D, 53, 1066–1072. arXiv:hep-ph/9507420. doi: 10.1103/PhysRevD.53.1066

Czarnecki, A., & Marciano, W. J. (1998). Parity violating asymmetries at future lepton colliders. Int. J. Mod. Phys. A, 13, 2235–2244. arXiv:hep-ph/9801394. doi: 10.1142/S0217751X98001037

Danby, G., Gaillard, J. M., Goulianos, K. A., Lederman, L. M., Mistry, N. B., Schwartz, M., & Steinberger, J. (1962). Observation of High-Energy Neutrino Reactions and the Existence of Two Kinds of Neutrinos. Phys. Rev. Lett., 9, 36–44. doi:10.1103/PhysRevLett.9.36

Daraktchieva, Z., & et al. (2005). Final results on the neutrino magnetic moment from the MUNU experiment. Phys. Lett. B, 615, 153–159. (arXiv:hep-ex/0502037) doi: 10.1016/j.physletb.2005.04.030

Davis, R., Jr., Harmer, D. S., & Hoffman, K. C. (1968). Search for neutrinos from the sun. Phys. Rev. Lett., 20, 1205–1209. doi: 10.1103/PhysRevLett.20.1205

Declais, Y., & et al. (1994). Study of reactor anti-neutrino interaction with proton at Bugey nuclear powerplant. Phys. Lett. B, 338, 383–389. doi:10.1016/0370-2693(94)91394-3

de Gouvea, A., & Jenkins, J. (2006). What can we learn from neutrino electron scattering? Phys. Rev. D, 74, 033004. arXiv:hep-ph/0603036. doi:10.1103/PhysRevD.74.033004

Deniz, M., & et al. (2010). Measurement of Nu(e)-bar - Electron Scattering Cross-Section with a CsI(Tl) Scintillating Crystal Array at the Kuo-Sheng Nuclear Power Reactor. Phys. Rev. D, 81, 072001. arXiv:0911.1597. doi: 10.1103/PhysRevD.81.072001

Derbin, A. I., Chernyi, A. V., Popeko, L. A., Muratova,V. N. Shishkina, G. A., & Bakhlanov, S. I. (1993). Experiment on anti-neutrino scattering by electrons at a reactor of the Rovno nuclear power plant. JETP Lett., 57, 768–772.

de Salas, P. F., Forero, D. V., Gariazzo, S., Martínez- Miravé, P., Mena, O., Ternes, C. A., . . .Valle, J. W. F. (2021). 2020 global reassessment of the neutrino oscillation picture. JHEP, 02, 071. arXiv:2006.11237. doi: 10.1007/JHEP02(2021)071

Dirac, P. A. M. (1928). The quantum theory of the electron. Proc. Roy. Soc. Lond. A, 117, 610–624. doi: 10.1098/rspa.1928.0023

Eguchi, K., & et al. (2003). First results from KamLAND: Evidence for reactor anti-neutrino disappearance. Phys. Rev. Lett., 90, 021802. arXiv:hep-ex/0212021. doi: 10.1103/PhysRevLett.90.021802

Englert, F., & Brout, R. (1964). Broken Symmetry and the Mass of Gauge Vector Mesons. Phys. Rev. Lett., 13, 321–323. doi: 10.1103/PhysRevLett.13.321

Esteban, I., Gonzalez-Garcia, M. C., Maltoni, M., Schwetz, T., & Zhou, A. (2020). The fate of hints: updated global analysis of three-flavor neutrino oscillations. JHEP, 09, 178. arXiv:2007.14792. doi: 10.1007/JHEP09(2020)178

Fermi, E. (1934). An attempt of a theory of beta radiation. 1. Z. Phys., 88, 161–177. doi: 10.1007/-BF01351864

Frekers, D., & et al. (2011). The Ga-71(He-3, t) reaction and the low-energy neutrino response. Phys. Lett. B,706, 134–138. doi: 10.1016/j.physletb.2011.10.061

Fukuda, Y., & et al. (1994). Atmospheric muon-neutrino /electron-neutrino ratio in the multiGeV energy range. Phys. Lett. B, 335, 237–245. doi:10.1016/0370-2693(94)91420-6

Fukuda, Y., & et al. (1996). Solar neutrino data covering solar cycle 22. Phys. Rev. Lett., 77, 1683–1686. doi: 10.1103/PhysRevLett.77.1683

Fukuda, Y., & et al. (1998a). Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett., 81, 1562–1567. arXiv:hep-ex/9807003. doi:10.1103/PhysRevLett.81.1562

Fukuda, Y., & et al. (1998b). Measurements of the solar neutrino flux from Super-Kamiokande’s first 300 days. Phys. Rev. Lett., 81, 1158–1162. arXiv:hep-ex/9805021. ([Erratum: Phys.Rev.Lett. 81, 4279 (1998)]) doi: 10.1103/PhysRevLett.81.1158

Garces, E. A., Miranda, O. G., Tortola, M. A., & Valle, J. W. F. (2012). Low-Energy Neutrino-Electron Scattering as a Standard Model Probe: The Potential of LENA as Case Study. Phys. Rev. D, 85, 073006. arXiv:1112.3633. doi: 10.1103/PhysRevD.85.073006

Garwin, R. L., Lederman, L. M., & Weinrich, M. (1957). Observations of the Failure of Conservation of Parity and Charge Conjugation in Meson Decays: The Magnetic Moment of the Free Muon. Phys. Rev., 105, 1415–1417. doi: 10.1103/PhysRev.105.1415

Giunti, C., & Kim, C. W. (2007). Fundamentals of Neutrino Physics and Astrophysics. Oxford University Press.

Giunti, C., & Laveder, M. (2011). Statistical Significance of the Gallium Anomaly. Phys. Rev. C, 83, 065504. arXiv:1006.3244. doi: 10.1103/PhysRevC.83.065504

Giunti, C., Laveder, M., Li, Y. F., Liu, Q. Y., & Long, H. W. (2012). Update of Short-Baseline Electron Neutrino and Antineutrino Disappearance. Phys. Rev. D, 86, 113014. arXiv:1210.5715. doi: 10.1103/PhysRevD.86.113014

Giunti, C., Li, Y. F., Littlejohn, B. R., & Surukuchi, P. T. (2019). Diagnosing the Reactor Antineutrino Anomaly with Global Antineutrino Flux Data. Phys. Rev. D, 99(7), 073005. doi: 10.1103/PhysRevD.99.073005

Glashow, S. L. (1961). Partial Symmetries of Weak Interactions. Nucl. Phys., 22, 579–588. doi: 10.1016/0029-5582(61)90469-2

Goldhaber, M., Grodzins, L., & Sunyar, A. W. (1958). Helicity of Neutrinos. Phys. Rev., 109, 1015–1017. doi:10.1103/PhysRev.109.1015

Gonzalez-Garcia, M. C., & Maltoni, M. (2008). Phenomenonology with Massive Neutrinos. Phys. Rept., 460, 1–129. arXiv:0704.1800. doi: 10.1016/j.physrep.2007.12.004

Hampel, W., & et al. (1996). GALLEX solar neutrino observations: Results for GALLEX III. Phys. Lett. B, 388, 384–396. doi: 10.1016/S0370-2693(96)01121-5

Hampel, W., & et al. (1998). Final results of the Cr-51 neutrino source experiments in GALLEX. Phys. Lett. B, 420, 114–126. doi: 10.1016/S0370-2693(97)01562-1

Hanna, G. C., & Pontecorvo, B. (1949). The β Spectrum of H3. Phys. Rev., 75, 983–984. doi: 10.1103/PhysRev.75.983.3

Hasert, F. J., & et al. (1973a). Observation of Neutrino Like Interactions Without Muon Or Electron in the Gargamelle Neutrino Experiment. Phys. Lett. B, 46, 138–140. doi: 10.1016/0370-2693(73)90499-1

Hasert, F. J., & et al. (1973b). Search for Elastic νµ Electron Scattering. Phys. Lett. B, 46, 121–124. doi: 10.1016/0370-2693(73)90494-2

Haxton, W. C. (1998). Cross-section uncertainties in the gallium neutrino source experiments. Phys. Lett. B, 431, 110–118. arXiv:nucl-th/9804011. doi:10.1016/S0370-2693(98)00581-4

Higgs, P. W. (1964). Broken symmetries, massless particles and gauge fields. Phys. Lett., 12, 132–133. doi: 10.1016/0031-9163(64)91136-9

Holder, M., & et al. (1977). Measurement of the Neutral to Charged Current Cross-Section Ratio in Neutrino and anti-neutrino Interactions. Phys. Lett. B, 71, 222. doi: 10.1016/0370-2693(77)90783-3

Hoummada, A., Lazrak Mikou, S., Avenier, M., Bagieu, G., Cavaignac, J., & Holm Koang, D. (1995). Neutrino oscillations i.l.l. experiment reanalysis. Applied Radiation and Isotopes, 46(6), 449-450. doi: https://doi.org/10.1016/0969-8043(95)00048-8

Huber, P. (2011). On the determination of anti-neutrino spectra from nuclear reactors. Phys. Rev. C, 84, 024617. arXiv:1106.0687. ([Erratum: Phys.Rev.C85, 029901 (2012)]) doi: 10.1103/PhysRevC.85.029901

Huber, P., & Schwetz, T. (2004). Precision spectroscopy with reactor anti-neutrinos. Phys. Rev. D, 70, 053011. arXiv:hep-ph/0407026. doi:10.1103/PhysRevD.70.053011

Kaether, F., Hampel, W., Heusser, G., Kiko, J., & Kirsten, T. (2010). Reanalysis of the GALLEX solar neutrino flux and source experiments. Phys. Lett. B, 685, 47–54. arXiv:1001.2731. doi: 10.1016/j.physletb.2010.01.030

Kayser, B., Gibrat-Debu, F., & Perrier, F. (1989). The Physics of massive neutrinos (Vol. 25).

Kodama, K., & et al. (2001). Observation of tau neutrino interactions. Phys. Lett. B, 504, 218–224. arXiv:hep-ex/0012035. doi: 10.1016/S0370-2693(01)00307-0

Kopeikin, V. I., Mikaelyan, L. A., & Sinev, V. V. (1997). Spectrum of electronic reactor anti-neutrinos. Phys. Atom. Nucl., 60, 172–176.

Krofcheck, D., & et al. (1985). Gamow-Teller Strength Function in Ge-71 via the (p, n) Reaction at Medium-Energies. Phys. Rev. Lett., 55, 1051–1054. doi: 10.1103/PhysRevLett.55.1051

Kumar, K. S., Mantry, S., Marciano, W. J., & Souder, P. A. (2013). Low Energy Measurements of the Weak Mixing Angle. Ann. Rev. Nucl. Part. Sci., 63, 237–267. arXiv:1302.6263. doi: 10.1146/annurev-nucl-102212-170556

Kuvshinnikov, A. A., Mikaelyan, L. A., Nikolaev, S. V., Skorokhvatov, M. D., & Etenko, A. V. (1990). Measuring the anti-electron-neutrino + p —> n + e+ cross-section and beta decay axial constant in a new experiment at Rovno NPP reactor. (In Russian). Yad. Fiz., 52, 472–479.

Kwon, H., Boehm, F., Hahn, A. A., Henrikson, H. E., Vuilleumier, J. L., Cavaignac, J. F., . . . Mossbauer, R. L. (1981). Search for Neutrino Oscillations at a Fission Reactor. Phys. Rev. D, 24, 1097–1111. doi: 10.1103/PhysRevD.24.1097

Landau, L. D. (1957). On the conservation laws for weak interactions. Nucl. Phys., 3, 127–131. doi: 10.1016/0029-5582(57)90061-5

Langacker, P. (2017). The Standard Model and Beyond. Taylor & Francis. doi: 10.1201/b22175

Lee, T. D., & Yang, C.-N. (1957). Parity Nonconservation and a Two Component Theory of the Neutrino. Phys. Rev., 105, 1671–1675. doi: 10.1103/PhysRev.105.1671

Leitner, R. (2017). Recent results of Daya Bay reactor neutrino experiment. Nucl. Part. Phys. Proc., 285-286, 32–37. doi: 10.1016/j.nuclphysbps.2017.03.007

Lindley, D. (2007). Landmarks: Detecting the Elusive Neutrino Phys. Rev. Focus, 19, 13. doi: 10.1103/PhysRevFocus.19.13

Majorana, E. (1937). Teoria simmetrica dell’elettrone del positrone. Nuovo Cim., 14, 171–184. doi: 10.1007/BF02961314

Maki, Z., Nakagawa, M., & Sakata, S. (1962). Remarks on the unified model of elementary particles. Prog. Theor. Phys., 28, 870–880. doi: 10.1143/PTP.28.870

Marciano, W. J., & Sirlin, A. (1980). Radiative Corrections to Neutrino Induced Neutral Current Phenomena in the SU(2)-L x U(1) Theory. Phys. Rev. D, 22, 2695. ([Erratum: Phys.Rev.D 31, 213 (1985)]) doi: 10.1103/PhysRevD.22.2695

Marciano, W. J., & Sirlin, A. (1981). Precise SU(5) Predictions for sin**2-Theta(W), m(W) and m(Z). Phys. Rev. Lett., 46, 163. doi: 10.1103/PhysRevLett.46.163

Mention, G., Fechner, M., Lasserre, T., Mueller, T. A., Lhuillier, D., Cribier, M., & Letourneau, A. (2011). The Reactor Antineutrino Anomaly. Phys. Rev. D, 83, 073006. (arXiv:1101.2755) doi: 10.1103/PhysRevD.83.073006

Mohapatra, R. N., & Smirnov, A. Y. (2006). Neutrino Mass and New Physics. Ann. Rev. Nucl. Part. Sci., 56, 569–628. arXiv:hep-ph/0603118. doi: 10.1146/annurev.nucl.56.080805.140534

Mueller, T. A., & et al. (2011). Improved Predictions of Reactor Antineutrino Spectra. Phys. Rev. C, 83, 054615. arXiv:1101.2663. doi: 10.1103/PhysRevC.83.054615

Osipowicz, A., & et al. (2001, 9). KATRIN: A Next generation tritium beta decay experiment with sub-eV sensitivity for the electron neutrino mass. Letter of intent. arXiv:hep-ex/0109033. (e-print)

Passera, M. (2001). QED corrections to neutrino electron scattering. Phys. Rev. D, 64, 113002. arXiv:hep ph/0011190. doi: 10.1103/PhysRevD.64.113002

Perrin, F. (1933). Possibilité d’émission de particules neutres de masse intrinsèque nulle dans les radioactivités beta. Comptes-Rendus, 197, 1625.

Pontecorvo, B. (1967). Neutrino Experiments and the Problem of Conservation of Leptonic Charge. Zh. Eksp. Teor. Fiz., 53, 1717–1725.

Prescott, C. Y., & et al. (1978). Parity Nonconservation in Inelastic Electron Scattering. Phys. Lett. B, 77,347–352. doi: 10.1016/0370-2693(78)90722-0

Reines, F., & Cowan, C. L. (1959). Free anti-neutrino absorption cross-section. 1: Measurement of the free anti-neutrino absorption cross-section by protons. Phys. Rev., 113, 273–279. doi: 10.1103/PhysRev.113.273

Salam, A. (1957). On parity conservation and neutrino mass. Nuovo Cim., 5, 299–301. doi: 10.1007/- BF02812841

Salam, A. (1968). Weak and Electromagnetic Interactions. Conf. Proc. C, 680519, 367–377. doi: 10.1142/9789812795915_0034

Sarantakos, S., Sirlin, A., & Marciano, W. J. (1983). Radiative Corrections to Neutrino-Lepton Scattering in the SU(2)-L x U(1) Theory. Nucl. Phys. B, 217, 84–116. doi: 10.1016/0550-3213(83)90079-2

Schwinger, J. S. (1957). A Theory of the Fundamental Interactions. Annals Phys., 2, 407–434. doi: 10.1016/0003-4916(57)90015-5

Sirlin, A. (1980). Radiative Corrections in the SU(2)-Lx U(1) Theory: A Simple Renormalization Framework. Phys. Rev. D, 22, 971–981. doi: 10.1103/PhysRevD.22.971

Strumia, A., & Vissani, F. (2006, 6). Neutrino masses and mixings and... arXiv:hep-ph/0606054. (e-print)

’t Hooft, G. (1971a). Predictions for neutrino - electron cross-sections in Weinberg’s model of weak interactions. Phys. Lett. B, 37, 195–196. doi: 10.1016/0370-2693(71)90050-5

’t Hooft, G. (1971b). Renormalization of Massless YangMills Fields. Nucl. Phys. B, 33, 173–199. doi:10.1016/0550-3213(71)90395-6

’t Hooft, G., & Veltman, M. J. G. (1972). Regularization and Renormalization of Gauge Fields. Nucl. Phys. B, 44, 189–213. doi: 10.1016/0550-3213(72)90279-9

Valle, J. W. F., & Romao, J. C. (2015). Neutrinos in high energy and astroparticle physics. Weinheim: Wiley-VCH.

Vidyakin, G. S., Vyrodov, V. N., Gurevich, I. I., Kozlov, Y. V., Martemyanov, V. P., Sukhotin, S. V., . . . Khakhimov, S. K. (1992). Limitations on the magnetic moment and charge radius of the electron-anti-neutrino. JETP Lett., 55, 206–210.

Weinberg, S. (1967). A Model of Leptons. Phys. Rev. Lett., 19, 1264–1266. doi: 10.1103/PhysRevLett.19.1264

Workman, R. L., & et al. (2022). Review of Particle Physics. PTEP, 2022, 083C01. doi: 10.1093/ptep/ptac097

Wu, C. S., Ambler, E., Hayward, R. W., Hoppes, D. D., & Hudson, R. P. (1957). Experimental Test of Parity Conservation in β Decay. Phys. Rev., 105, 1413–1414. doi: 10.1103/PhysRev.105.1413

Yang, C.-N., & Mills, R. L. (1954). Conservation of Isotopic Spin and Isotopic Gauge Invariance. Phys. Rev., 96, 191–195. doi: 10.1103/PhysRev.96.191

Zacek, G., & et al. (1986). Neutrino Oscillation Experiments at the Gosgen Nuclear Power Reactor. Phys.Rev. D, 34, 2621–2636. doi:10.1103/PhysRevD.34.2621

Zeller, G. P., & et al. (2002). A Precise Determination of Electroweak Parameters in Neutrino Nucleon Scattering. Phys. Rev. Lett., 88, 091802. arXiv:hep-ex/0110059. ([Erratum: Phys.Rev.Lett. 90, 239902 (2003)]) doi: 10.1103/PhysRevLett.88.091802

Zyla, P. A., & et al. (2020). Review of Particle Physics.PTEP, 2020(8), 083C01. doi:10.1093/ptep/ptaa104

Descargas

Publicado

enero 31, 2023 — Actualizado el enero 10, 2023

Licencia

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.